Abstract

Some well-known mobile bearing designs have had truly excellent long-term clinical results. Their lower constraint and ability for some self-alignment might have helped reduce the shear forces and torques transmitted to the prosthesis–bone interface, thereby lowering the risk of loosening. However, the most commonly assumed benefit of mobile bearings is the reduction in wear due to less contact stress and reduced cross shear. In a rotating platform, wear can be reduced because the rolling/sliding motion is separated from the transverse rotational motion, which reduces cross-shear. Although it has not been categorically proven clinically, such lower wear expectations with mobile bearings might have influenced the thinking of some total knee replacement (TKR) designers and test engineers. This paper amalgamates invitro TKR wear results from two separate laboratories (in Nebraska and Germany) to present the largest data set ever published on wear, across the widest variety of fixed and mobile bearing TKR designs. Many hundreds of TKR samples were tested with largely similar methodologies using the ISO 14243-1 force-control method. These tests covered 133 different fixed and mobile bearing designs and materials, in total (bicondylar) and unicompartmental forms, and of a wide range of sizes. Clear differences in wear resulted with known superior bearing materials. This illustrates how sensitive and capable of discriminating between low and high wearing implants the force-control wear testing methodology is. However, between both labs, and across all tests, no statistically significant differences were found in wear overall between fixed and mobile bearings. Therefore, the wear of mobile bearing knees is not necessarily less than that of fixed bearings. In both, it depends on the detailed design and materials of the TKR. Testing appears to be necessary with all implant designs, regardless of the history of clinically successful predicates of seemingly similar generic design.

References

1.
Buechel
,
F. F.
, Sr.
,
Buechel
,
F. F.
, Jr.
,
Pappas
,
M. J.
, and
D’Alessio
,
J.
, “
Twenty Year Evaluation of Meniscal Bearing and Rotating Platform Knee Replacements
,”
Clin. Orthop. Relat. Res.
, Vol.
388
,
2001
, pp.
41
50
. https://doi.org/10.1097/00003086-200107000-00008
2.
Murray
,
D. W.
,
Goodfellow
,
J. W.
, and
O’Conner
,
J. J.
, “
The Oxford Medial Unicompartmental Arthroplasty: A Ten Year Study
,”
J. Bone Joint Surg. Br.
, Vol.
80-B
(
6
),
1998
, pp.
983
989
. https://doi.org/10.1302/0301-620X.80B6.8177
3.
Werner
,
F.
,
Foster
,
D.
, and
Murray
,
D. G.
, “
The Influence of Design on the Transmission of Torque across Knee Prostheses
,”
J. Bone Joint Surg. Am.
, Vol.
60
,
1978
, pp.
342
348
.
4.
Bottlang
,
M.
,
Erne
,
O. K.
,
Lacatusu
,
E.
,
Sommers
,
M. B.
, and
Kessler
,
O.
, “
A Mobile-Bearing Knee Prosthesis Can Reduce Strain at the Proximal Tibia
,”
Clin. Orthop. Relat. Res.
, Vol.
447
,
2006
, pp.
105
111
. https://doi.org/10.1097/01.blo.0000203463.27937.97
5.
Stukenborg-Colsman
,
C.
,
Ostermeier
,
S.
,
Wenger
,
K. H.
, and
Wirth
,
C. J.
, “
Relative Motion of a Mobile Bearing Inlay after Total Knee Arthroplasty: Dynamic InVitro Study
,”
Clin. Biomech. (Bristol, Avon)
, Vol.
17
,
2002
, pp.
49
55
. https://doi.org/10.1016/S0268-0033(01)00103-6
6.
D’Lima
,
D. D.
,
Chen
,
P. C.
, and
Colwell
,
C. W.
, Jr.
, “
Polyethylene Contact Stresses, Articular Congruity, and Knee Alignment
,”
Clin. Orthop. Relat. Res.
, Vol.
392
,
2001
, pp.
232
238
. https://doi.org/10.1097/00003086-200111000-00029
7.
Pooley
,
C.
, and
Tabor
,
D.
, “
Friction and Molecular Structure: The Behavior of Some Thermoplastics
,”
Proc. R. Soc. London
, Vol.
329
(
A
),
1972
, pp.
251
274
. https://doi.org/10.1098/rspa.1972.0112
8.
Jones
,
V. C.
,
Barton
,
D. C.
,
Fitzpatrick
,
D. P.
,
Auger
,
D. D.
,
Stone
,
M. H.
, and
Fisher
,
J.
, “
An Experimental Model of Tibial Counterface Polyethylene Wear in Mobile Bearing Knees: The Influence of Design and Kinematics
,”
Biomed. Mater. Eng.
, Vol.
9
(
3
),
1999
, pp. 189–196.
9.
McEwen
,
H. M.
,
Barnett
,
P. I.
,
Bell
,
C. J.
,
Farrar
,
R.
,
Auger
,
D. D.
,
Stone
,
M. H.
, and
Fisher
,
J.
, “
The Influence of Design, Materials and Kinematics on the InVitro Wear of Total Knee Replacements
,”
J.Biomech.
, Vol.
38
,
2005
, pp. 357–365. https://doi.org/10.1016/j.jbiomech.2004.02.015
10.
Biau
,
D.
,
Mullins
,
M. M.
,
Judet
,
T.
, and
Piriou
,
P.
, “
Mobile versus Fixed Bearing Total Knee Arthroplasty: Mid-term Comparative Clinical Results of 216 Prostheses
,”
Knee Surg. Sports Traumatol. Arthrosc.
, Vol.
14
(
10
),
2006
, pp.
927
933
. https://doi.org/10.1007/s00167-006-0070-5
11.
Callaghan
,
J. J.
,
Insall
,
J. N.
,
Greenwald
,
A. S.
,
Dennis
,
D. A.
,
Komistek
,
R. D.
,
Murray
,
D. W.
,
Bourne
,
R. B.
,
Rorabeck
,
C. H.
, and
Dorr
,
L. D.
, “
Mobile Bearing Knee Replacement: Concepts and Results
,”
AAOS Instructional Course Lectures
, Vol.
50
,
2001
, pp.
431
449
.
12.
Catani
,
F.
,
Benedetti
,
M. G.
,
De Felice
,
R.
,
Buzzi
,
R.
,
Giannini
,
S.
, and
Agliettti
,
P.
, “
Mobile and Fixed Bearing Total Knee Prosthesis Functional Comparison during Stair Climbing
,”
Clin. Biomech.
, Vol.
18
,
2003
, pp.
410
418
. https://doi.org/10.1016/S0268-0033(03)00044-5
13.
Dennis
,
D. A.
, and
Komistek
,
R. D.
, “
Kinematics of Mobile-Bearing Total Knee Arthroplasty
,”
AAOS Instructional Course Lectures
, Vol.
54
,
2005
, pp.
207
220
.
14.
Dixon
,
M. C.
,
Brown
,
R. R.
,
Parsch
,
D.
, and
Scott
,
R. D.
, “
Modular Fixed Bearing Total Knee Arthroplasty with Retension of the Posterior Cruciate Ligament. A Study of Patients Followed for a Minimum of Fifteen Years
,”
J. Bone Jt. Surg.
, Vol.
87
(
3
),
2005
, pp.
598
603
. https://doi.org/10.2106/JBJS.C.00591
15.
Gill
,
G. S.
,
Joshi
,
A. B.
, and
Mills
,
D. M.
, “
Total Condylar Knee Arthroplasty: 16- to 21-Year Results
,”
Clin. Orthop. Relat. Res.
, Vol.
367
,
1999
, pp.
210
215
. https://doi.org/10.1097/00003086-199910000-00026
16.
Griffin
,
W. L.
,
Fehring
,
T. K.
,
Pomeroy
,
D. L.
,
Gruen
,
T. A.
, and
Murphy
,
J. A.
, “
Sterilization and Wear-Related Failure in First- and Second-Generation Press-Fit Condylar Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, Vol.
464
,
2007
, pp.
16
20
.
17.
Huang
,
C. H.
,
Su
,
R. Y.
,
Lai
,
J. H.
, and
Hsieh
,
M. S.
, “
Long-Term Results of the Total Condylar Knee Arthroplasty in Taiwan: A 10 to 15 Year Follow-Up
,”
Journal of Orthopaedic Surgery and Research
, Vol.
13
,
1996
, pp.
1
10
.
18.
Laskin
,
R. S.
, “
The Genesis Total Knee Prosthesis: A 10-Year Follow-Up Study
,”
Clin. Orthop. Relat. Res.
, Vol.
388
,
2001
, pp.
95
102
. https://doi.org/10.1097/00003086-200107000-00014
19.
Pavone
,
V.
,
Boettner
,
F.
,
Fickert
,
S.
, and
Sculco
,
T. P.
, “
Total Condylar Knee Arthroplasty: A Long-Term Follow-Up
,”
Clin. Orthop. Relat. Res.
, Vol.
388
,
2001
, pp.
18
25
. https://doi.org/10.1097/00003086-200107000-00005
20.
Scuderi
,
G. R.
,
Insall
,
J. N.
,
Windsor
,
R. E.
, and
Moran
,
M. C.
, “
Survivorship of Cemented Knee Replacements
,”
J. Bone Joint Surg. Br.
, Vol.
71-B
,
1989
, pp.
798
803
.
21.
Ritter
,
M. A.
,
Bernard
,
M. E.
,
Meding
,
J. B.
,
Keating
,
E. M.
,
Faris
,
P. M.
, and
Crites
,
B. M.
, “
Long-Term Follow-Up of Anatomic Graduated Components Posterior Cruciate-Retaining Total Knee Replacement
,”
Clin. Orthop. Relat. Res.
, Vol.
388
,
2001
, pp.
51
57
. https://doi.org/10.1097/00003086-200107000-00009
22.
Kim
,
Y. H.
,
Kook
,
H. K.
, and
Kim
,
J. S.
, “
Comparison of Fixed-Bearing and Mobile-Bearing Total Knee Arthroplasties
,”
Clin. Orthop. Relat. Res.
, Vol.
392
,
2001
, pp.
1
15
. https://doi.org/10.1097/00003086-200111000-00013
23.
Price
,
A. J.
,
Rees
,
J. L.
,
Beard
,
D.
,
Juszczak
,
E.
,
Carter
,
S.
,
White
,
S.
,
De Steiger
,
R.
,
Dodd
,
C. A. F.
,
Gibbons
,
M.
,
McLardy-Smith
,
P.
,
Goodfellow
,
J. W.
, and
Murray
,
D. W.
, “
A Mobile-Bearing Total Knee Prosthesis Compared with a Fixed-Bearing Prosthesis: A Multicenter Single-Blind Randomized Controlled Trial
,”
J. Bone Joint Surg. Br.
, Vol.
85-B
,
2003
, pp.
62
67
. https://doi.org/10.1302/0301-620X.85B1.13233
24.
Kim
,
Y. H.
,
Yoon
,
S. H.
, and
Kim
,
J. S.
, “
The Long Term Results of Simultaneous Fixed-Bearing and Mobile Bearing Total Knee Replacements Performed in the Same Patient
,”
J. Bone Jt. Surg.
, Vol.
89-B
(
10
),
2007
, pp.
1317
1323
. https://doi.org/10.1302/0301-620X.89B10.19223
25.
Haider
,
H.
, and
Garvin
,
K.
, “
Rotating Platform versus Fixed-Bearing Total Knees—An InVitro Study of Wear
,”
Clin. Orthop. Relat. Res.
, Vol.
466
,
2008
, pp.
2677
2685
. https://doi.org/10.1007/s11999-008-0463-5
26.
Fisher
,
J.
,
McEwen
,
H. M. J.
,
Tipper
,
J. L.
,
Jennings
,
L. M.
,
Farrar
,
R.
,
Stone
,
M. H.
, and
Ingham
,
E.
, “
Wear-Simulation Analysis of Rotating-Platform Mobile Bearing Knees
,”
Orthopedics
, Vol.
29
(
9
),
2006
, pp.
36
41
.
27.
Jennings
,
L. M.
,
Bell
,
C. J.
,
Ingham
,
E.
,
Komistek
,
R. D.
,
Stone
,
M. H.
, and
Fisher
,
J.
, “
The Influence of Femoral Condylar Lift-off on the Wear of Artificial Knee Joints
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
, Vol.
221
(
H3
),
2007
, pp.
305
314
. https://doi.org/10.1243/09544119JEIM215
28.
Haider
,
H.
, “
Tribological Assessment of UHMWPE in the Knee
,”
UHMWPE Biomaterials Handbook
, 2nd ed.,
S. M.
Kurtz
, Ed.,
Academic
,
New York
,
2009
, pp.
381
408
.
29.
Morrison
,
J. B.
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
, Vol.
3
,
1970
, pp.
51
61
. https://doi.org/10.1016/0021-9290(70)90050-3
30.
Mikosz
,
R. P.
,
Andriacchi
,
T. P.
, and
Andersson
,
G. B. J.
, “
Model Analysis of Factors Influencing the Prediction of Muscle Forces at the Knee
,”
J. Orthop. Res.
, Vol.
6
,
1988
, pp.
205
214
. https://doi.org/10.1002/jor.v6:2
31.
Taylor
,
S.
,
Walker
,
P. S.
,
Perry
,
J.
,
Cannon
,
S. R.
, and
Woledge
,
R.
, “
The Forces in the Distal Femur and the Knee during Walking and Other Activities Measured by Telemetry
,”
J. Arthroplasty
, Vol.
13
,
1998
, pp.
428
437
. https://doi.org/10.1016/S0883-5403(98)90009-2
32.
D’Lima
,
D. D.
,
Patil
,
S.
,
Steklov
,
N.
,
Chien
,
S.
, and
Colwell
,
C.
, Jr.
, “
InVivo Knee Moments and Shear after Total Knee Arthroplasty
,”
J. Biomech.
, Vol.
40
,
2007
, pp.
S11
S17
. https://doi.org/10.1016/j.jbiomech.2007.03.004
33.
Fukubayashi
,
T.
,
Torzilli
,
P. A.
,
Sherman
,
M. F.
, and
Warren
,
R. F.
, “
An In-Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee
,”
J. Bone Jt. Surg.
, Vol.
64-A
(
2
),
1982
, pp.
258
264
.
34.
Walker
,
P. S.
, and
Haider
,
H.
, “
Characterizing the Motion of Total Knee Replacements in Laboratory Tests
,”
Clin. Orthop. Relat. Res.
, Vol.
410
,
2003
, pp. 54–68.
35.
Haider
,
H.
,
Walker
,
P.
,
DesJardins
,
J.
, and
Blunn
,
G.
, “
Effects of Patient and Surgical Alignment Variables on Kinematics in TKR Simulation Under Force-Control
,”
J. ASTM Int.
, Vol.
3
(
10
),
2006
, pp.
3
14
.
This content is only available via PDF.
You do not currently have access to this content.