Abstract

In the current version of ASTM F2624, the center of rotation (COR) is not specified. Potentially, each device can be tested using a different COR, which subsequently makes a direct design comparison of results difficult. Four posterior dynamic stabilization (PDS) devices (Dynesys, DYN, Zimmer; DSS, Paradigm Spine; and two Aesculap implant concepts) were tested in comparison to a rigid-fixation device and to the native situation of the lumbar spine on fresh-frozen human lumbar spines (L3–L5). The instrumented level was L4–L5. The PDS systems have axial compressive stiffness values ranging from 10 N/mm to 230 N/mm and were all made compatible to connect with the pedicle-screw system. The specimens were loaded in a spinal simulator, applying pure moments for flexion/extension, lateral bending and axial rotation (+/−7.5 Nm) with a defined velocity. The COR was analyzed based on the data measured with a 3-dimensional (3D) motion-analysis system. The effect of the PDS on the location of the COR is most pronounced in the sagittal plane. In general, the higher the implant stiffness, the more the COR shifted in a posterior direction. The DYN had a similar COR to the rigid fixator. However, the PDS systems with low axial compressive stiffness values (range: 10–70 N/mm) showed very similar results on CORs, which are located in the region of the posterior border of the intervertebral disc. In the frontal and transversal plane, the COR was found to be close to the native situation for each system. Therefore, for PDS devices with low implant stiffness, the location of the COR varies only marginally and can be specified for a test setup. An initial proposal that will allow side-by-side comparison for these kinds of PDS systems is given and the feasibility of the new test setup could be proven for all three loading conditions.

References

1.
Niosi
,
C. A.
,
Zhu
,
Q. A.
,
Wilson
,
D. C.
,
Keynan
,
O.
,
Wilson
,
D. R.
, and
Oxland
,
T. R.
, “
Biomechanical Characterization of the Three-Dimensional Kinematic Behaviour of the Dynesys Dynamic Stabilization System: An in Vitro Study
,”
Eur. Spine J
,, Vol.
15
(
6
),
2006
, pp.
913
922
. https://doi.org/10.1007/s00586-005-0948-9
2.
Niosi
,
C. A.
,
Wilson
,
D. C.
,
Zhu
,
Q.
,
Keynan
,
O.
,
Wilson
,
D. R.
, and
Oxland
,
T. R.
, “
The Effect of Dynamic Posterior Stabilization on Facet Joint Contact Forces: An in Vitro Investigation
,”
Spine
, Vol.
33
(
1
),
2008
, pp.
19
26
. https://doi.org/10.1097/BRS.0b013e31815e7f76
3.
Schmoelz
,
W.
,
Huber
,
J. F.
,
Nydegger
,
T.
,
Dipl
,
I.
,
Claes
,
L.
, and
Wilke
,
H. J.
, “
Dynamic Stabilization of the Lumbar Spine and Its Effects on Adjacent Segments: An in Vitro Experiment
,”
J. Spinal Disord. Tech.
, Vol.
16
(
4
),
2003
, pp.
418
423
. https://doi.org/10.1097/00024720-200308000-00015
4.
Schmoelz
,
W.
,
Huber
,
J. F.
,
Nydegger
,
T.
,
Claes
,
L.
, and
Wilke
,
H. J.
, “
Influence of a Dynamic Stabilisation System on Load Bearing of a Bridged Disc: An in Vitro Study of Intradiscal Pressure
,”
Eur. Spine J.
, Vol.
15
(
8
),
2006
, pp.
1276
1285
. https://doi.org/10.1007/s00586-005-0032-5
5.
Schulte
,
T. L.
,
Hurschler
,
C.
,
Haversath
,
M.
,
Liljenqvist
,
U.
,
Bullmann
,
V.
,
Filler
,
T. J.
,
Osada
,
N.
,
Fallenberg
,
E. M.
, and
Hackenberg
,
L.
, “
The Effect of Dynamic, Semi-Rigid Implants on the Range of Motion of Lumbar Motion Segments After Decompression
,”
Eur. Spine J.
, Vol.
17
(
8
),
2008
, pp.
1057
1065
. https://doi.org/10.1007/s00586-008-0667-0
6.
Schilling
,
C.
,
Krüger
,
S.
,
Grupp
,
T. M.
,
Duda
,
G. N.
,
Blömer
,
W.
, and
Rohlmann
,
A.
, “
The Effect of Design Parameters of Dynamic Pedicle Screw Systems on Kinematics and Load Bearing—An in Vitro Study
,”
Eur. Spine J.
, Vol.
20
(
2
),
2011
, pp.
297
307
. https://doi.org/10.1007/s00586-010-1620-6
7.
Grob
,
D.
,
Benini
,
A.
,
Junge
,
A.
, and
Mannion
,
A. F.
, “
Clinical Experience with the Dynesys Semirigid Fixation System for the Lumbar Spine: Surgical and Patient-Oriented Outcome in 50 Cases After an Average of 2 Years
,”
Spine
, Vol.
30
(
3
),
2005
, pp.
324
331
. https://doi.org/10.1097/01.brs.0000152584.46266.25
8.
Putzier
,
M.
,
Schneider
,
S. V.
,
Funk
,
J.
, and
Perka
,
C.
, “
Die Anwendung eines dynamischen Pedikelschraubensystems (DYNESYS) bei lumbalen Segmentdegenerationen: ein Vergleich klinischer und radiologischer Ergebnisse bei unterschiedlichen Indikationen [Application of a Dynamic Pedicle Screw System (DYNESYS) for Lumbar Segmental Degenerations: Comparison of Clinical and Radiological Results for Different Indications]
,”
Z. Orthop.
, Vol.
142
(
2
), pp.
166
173
,
2004
(in German). https://doi.org/10.1055/s-2004-818781
9.
Putzier
,
M.
,
Schneider
,
S. V.
,
Funk
,
J. F.
,
Tohtz
,
S. W.
, and
Perka
,
C.
, “
The Surgical Treatment of the Lumbar Disc Prolapse: Nucleotomy with Additional Transpedicular Dynamic Stabilization Versus Nucleotomy Alone
,”
Spine
, Vol.
30
(
5
),
2005
, pp.
E109
E114
. https://doi.org/10.1097/01.brs.0000154630.79887.ef
10.
Wurgler-Hauri
,
C. C.
,
Kalbarczyk
,
A.
,
Wiesli
,
M.
,
Landolt
,
H.
, and
Fandino
,
J.
, “
Dynamic Neutralization of the Lumbar Spine After Microsurgical Decompression in Acquired Lumbar Spinal Stenosis and Segmental Instability
,”
Spine
, Vol.
33
(
3
),
2008
, pp.
E66
E72
. https://doi.org/10.1097/BRS.0b013e31816245c0
11.
Schmidt
,
H.
,
Heuer
,
F.
, and
Wilke
,
H. J.
, “
Which Axial and Bending Stiffnesses of Posterior Implants Are Required to Design a Flexible Lumbar Stabilization System?”
J. Biomech.
, Vol.
42
(
1
),
2009
, pp.
48
54
. https://doi.org/10.1016/j.jbiomech.2008.10.005
12.
Wilke
,
H. J.
,
Heuer
,
F.
, and
Schmidt
,
H.
, “
Prospective Design Delineation and Subsequent in Vitro Evaluation of a New Posterior Dynamic Stabilization System
,”
Spine
, Vol.
34
(
3
),
2009
, pp.
255
261
. https://doi.org/10.1097/BRS.0b013e3181920e9c
13.
Rohlmann
,
A.
,
Burra
,
N. K.
,
Zander
,
T.
, and
Bergmann
,
G.
, “
Comparison of the Effects of Bilateral Posterior Dynamic and Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis
,”
Eur. Spine J.
, Vol.
16
(
8
),
2007
, pp.
1223
1231
. https://doi.org/10.1007/s00586-006-0292-8
14.
Zhao
,
F.
,
Pollintine
,
P.
,
Hole
,
B.
,
Dolan
,
P.
, and
Adams
,
M. A.
, “
Discogenic Origins of Spinal Instability
,”
Spine
, Vol.
30
(
23
),
2005
, pp.
2621
2630
. https://doi.org/10.1097/01.brs.0000188203.71182.c0
15.
Schilling
,
C.
,
Vieweg
,
U.
,
Grupp
,
T. M.
, and
Bloemer
,
W.
, “
A Synthetic in Vitro Model for a Standardized Comparison of Dynamic Stabilization Devices
,”
J. Biomech.
, Vol.
41
(
S1
),
2008
, p. 1. https://doi.org/10.1016/S0021-9290(08)70524-4
16.
Wilke
,
H. J.
,
Wenger
,
K.
, and
Claes
,
L.
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of in Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
, Vol.
7
(
2
),
1998
, pp.
148
154
. https://doi.org/10.1007/s005860050045
17.
Crawford
,
N. R.
,
Brantley
,
A. G.
,
Dickman
,
C. A.
, and
Koeneman
,
E. J.
, “
An Apparatus for Applying Pure Nonconstraining Moments to Spine Segments in Vitro
,”
Spine
, Vol.
20
(
19
),
1995
, pp.
2097
2100
. https://doi.org/10.1097/00007632-199510000-00005
18.
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Yamamoto
,
I.
, and
Crisco
,
J. J.
, “
Mechanical Behavior of the Human Lumbar and Lumbosacral Spine Shown by Three-Dimensional Load-Displacement Curves
,”
J. Bone Jt. Surg., Am. Vol.
, Vol.
76
(
3
),
1994
, pp.
413
424
.
19.
Mimura
,
M.
,
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Crisco
,
J. J.
,
Yamamoto
,
I.
, and
Vasavada
,
A.
, “
Disc Degeneration Affects the Multidirectional Flexibility of the Lumbar Spine
,”
Spine
,
19
(
12
),
1994
, pp.
1371
1380
. https://doi.org/10.1097/00007632-199406000-00011
20.
Fujiwara
,
A.
,
Lim
,
T. H.
,
An
,
H. S.
,
Tanaka
,
N.
,
Jeon
,
C. H.
,
Andersson
,
G. B.
, and
Haughton
,
V. M.
, “
The Effect of Disc Degeneration and Facet Joint Osteoarthritis on the Segmental Flexibility of the Lumbar Spine
,”
Spine
,
25
(
23
),
2000
, pp.
3036
3044
. https://doi.org/10.1097/00007632-200012010-00011
This content is only available via PDF.
You do not currently have access to this content.