Abstract

In this paper, the influence of surface hardening depth promoted by plasma nitriding and Cr–Al–N coating deposition on the cavitation erosion resistance of a low alloy steel was investigated. Samples that were plasma nitrided for 2 and 4 h were produced and coated with 1 and 2 μm Cr–Al–N coatings deposited by plasma assisted physical vapor deposition. The characterization was carried out by X-ray diffraction (θ–2θ and glancing angle configurations), scanning electron microscopy, Rockwell C adhesion test, and three dimensional (3D) profilometry. Knoop microhardness tests were also performed. Cavitation erosion tests were carried out according to ASTM G32-03 Standard. The incubation period and cavitation erosion rate were determined. Coating deposition had a major influence on the incubation period, with thicker coatings resulting in longer times. Plasma nitriding treatment was more effective on reducing the average erosion rate. The plasma nitriding treatment and Cr–Al–N coating deposition in conjunction led to a decrease in both incubation period and erosion rate. The hardened systems presented mass loss up to 11 times lower than the nonhardened steel for the same time. It was concluded that the surface hardening was effective to improve the cavitation erosion resistance of a low alloy steel and the wear rate decreased with the increase of the hardening depth.

References

1.
Huang
,
W. H.
,
Chen
,
K. C.
, and
He
,
J. L.
, “
A Study on the Cavitation Resistance of Ion-Nitrided Steel
,”
Wear
, Vol.
252
,
2002
, pp.
459
466
. https://doi.org/10.1016/S0043-1648(01)00897-3
2.
Mann
,
B. S.
, and
Arya
,
V.
, “
An Experimental Study to Correlate Water Jet Impingement Erosion Resistance and Properties of Metallic Materials and Coatings
,”
Wear
, Vol.
253
,
2002
, pp.
650
661
. https://doi.org/10.1016/S0043-1648(02)00118-7
3.
Krella
,
A.
, and
Czyzniewski
,
A.
, “
Cavitation Erosion Resistance of Cr–N Coating Deposited on Stainless Steel
,”
Wear
, Vol.
260
,
2006
, pp.
1324
1332
. https://doi.org/10.1016/j.wear.2005.09.018
4.
Kwok
,
C. T.
,
Cheng
,
F. T.
, and
Man
,
H. C.
, “
Synergetic Effect of Cavitation Erosion and Corrosion of Various Engineering Alloys in 3.5% NaCl Solution
,”
Mater. Sci. Eng.
, Vol.
A290
,
2000
, pp.
145
154
.
5.
Münsterer
,
S.
, and
Kohlhof
,
K.
, “
Cavitation Protection by Low Temperature TiCN Coatings
,”
Surf. Coat. Technol.
, Vol.
74–75
,
1995
, pp.
642
647
. https://doi.org/10.1016/0257-8972(95)08265-4
6.
Han
,
S.
,
Lin
,
J. H.
,
Kuo
,
J. J.
,
He
,
J. L.
, and
Shih
,
H. C.
, “
The Cavitation-Erosion Phenomenon of Chromium Nitride Coatings Deposited Using Cathodic Arc Plasma Deposition on Steel
,”
Surf. Coat. Technol.
, Vol.
161
,
2002
, pp.
20
25
. https://doi.org/10.1016/S0257-8972(02)00392-4
7.
Krella
,
A.
, and
Czyzniewski
,
A.
, “
Influence of the Substrate Hardness on the Cavitation Erosion Resistance of the TiN Coating
,”
Wear
, Vol.
263
,
2007
, pp.
395
401
. https://doi.org/10.1016/j.wear.2007.02.003
8.
Godoy
,
C.
,
Mancosu
,
R. D.
,
Lima
,
M. M.
,
Brandão
,
D.
,
Housden
,
J.
, and
Avelar-Batista
,
J. C.
, “
Influence of Plasma Nitriding and PAPVD Cr1xNx Coating on the Cavitation Erosion Resistance of an AISI 1045 Steel
,”
Surf. Coat. Technol.
, Vol.
200
,
2006
, pp.
5370
5378
. https://doi.org/10.1016/j.surfcoat.2005.06.012
9.
Heinke
,
W.
,
Leyland
,
A.
,
Matthews
,
A.
,
Berg
,
G.
,
Friedrich
,
C.
, and
Broszeit
,
E.
, “
Evaluation of PVD Nitride Coatings, Using Impact, Scratch and Rockwell-C Adhesion Tests
,”
Thin Solid Films
, Vol.
270
,
1995
, pp.
431
438
. https://doi.org/10.1016/0040-6090(95)06934-8
10.
Godoy
,
C.
,
Mancosu
,
R. D.
,
Machado
,
R. R.
,
Modenesi
,
P. J.
, and
Avelar-Batista
,
J. C.
, “
Which Hardness (Nano or Macrohardness) Should be Evaluated in Cavitation?
Tribol. Int.
, Vol.
42
,
2009
, pp.
1021
1028
. https://doi.org/10.1016/j.triboint.2008.09.007
11.
Stout
,
J.
, and
Blunt
,
L.
,
Three Dimensional Surface Topography
, 2nd ed.,
Penton
,
London
,
1994
.
12.
Mummery
,
L. Y.
,
Surface Texture Analysis—The Handbook
, 1st ed.,
Hommelwerke GmbH
,
West Germany
,
1992
.
13.
ASTM G32-03,
2003
, “
Standard Test Method for Cavitation Erosion Using Vibratory Apparatus
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
.
14.
Podgornik
,
B.
,
Vizintin
,
J.
,
Wänstrand
,
O.
,
Larsson
,
M.
,
Hogmark
,
S.
,
Ronkainen
,
H.
, and
Holmberg
,
K.
, “
Tribological Properties of Plasma Nitrided and Hard Coated AISI 4140 Steel
,”
Wear
, Vol.
249
,
2001
, pp.
254
259
. https://doi.org/10.1016/S0043-1648(01)00564-6
15.
Mahboubi
,
F.
, and
Abdolvahabi
,
K.
, “
The Effect of Temperature on Plasma Nitriding Behaviour of DIN 1.6959 Low Alloy Steel
,”
Vaccum
, Vol.
81
,
2006
, pp.
239
243
. https://doi.org/10.1016/j.vacuum.2006.03.010
16.
Ochoa
,
E. A.
,
Figueroa
,
C. A.
, and
Alvarez
,
F.
, “
Nitriding of AISI 4140 Steel by Low Energy Broad Ion Source
,”
J. Vac. Sci. Technol. A
, Vol.
24
,
2006
, pp.
2113
2116
. https://doi.org/10.1116/1.2356480
17.
Corengia
,
P.
,
Ybarra
,
G.
,
Moina
,
C.
,
Cabo
,
A.
, AND
Broitman
,
E.
, “
Microstructural and Topographical Studies of DC-Pulsed Plasma Nitrided AISI 4140 Low-Alloy Steel
,”
Surf. Coat. Technol.
, Vol.
200
,
2005
, pp.
2391
2397
. https://doi.org/10.1016/j.surfcoat.2005.01.060
18.
Mancosu
,
R. D.
, “
Recobrimento Tribológico Cr-N e Nitretação a Plasma para Melhoria da Resistência à Erosão Cavitacional de um Aço Carbono ABNT 1045: Uma Abordagem Topográfica
,” Ph.D. thesis,
Engineering School, Federal Univ. of Minas Gerais
, Belo Horizonte,
2005
(in Portuguese)
19.
Piana
,
L. A.
,
Pérez
,
E. A.
,
Souza
,
R. M.
,
Kunrath
,
A. O.
, AND
Strohaecker
,
T. R.
, “
Numerical and Experimental Analyses on the Indentation of Coated Systems with Substrates with Different Mechanical Properties
,”
Thin Solid Films
, Vol.
491
,
2005
, pp.
1020
1027
. https://doi.org/10.1016/j.tsf.2005.06.025
This content is only available via PDF.
You do not currently have access to this content.