Abstract

Plastic drainage pipes are an essential component of modern engineered barrier systems used in municipal and hazardous solid waste landfills. The design and performance of plastic pipes in these applications is significantly different than conventional municipal sewers and culverts. For example, the plastic pipe may be surrounded by very coarse gravel backfill which results in additional local bending stresses from the irregular loading and support for the pipe. These plastic pipes also experience local stress concentrations from the perforations required to collect fluid. Both of these factors are exacerbated by potentially large overburden pressures acting above the pipe. They must also perform their function while being exposed to chemicals in landfill leachate for long periods of time and at temperatures significantly larger than those for conventional sewers and culverts. The influence of coarse gravel backfill, large perforations, large overburden stresses, chemical exposure and elevated temperatures on the long-term performance of plastic drainage pipes is examined.

References

1.
Rowe
,
R. K.
,
Quigley
,
R. M.
,
Brachman
,
R. W. I.
, and
Booker
,
J. R.
,
Barrier Systems for Waste Disposal Facilities
,
Taylor & Francis/Spon
,
London
,
2004
, p. 579.
2.
Fleming
,
I. R.
,
Rowe
,
R. K.
, and
Cullimore
,
D. R.
, “
Field Observations of Clogging in a Landfill Leachate Collection System
,”
Can. Geotech. J.
, Vol.
36
, No.
4
,
1999
, pp.
289
296
. https://doi.org/10.1139/t99-036
3.
Ontario Ministry of the Environment, Landfill Standards: A Guideline on the Regulatory and Approval Requirements for the New or Expanding Landfilling Sites, Ontario Regulation 232/98,
1998
, Queen’s Printer for Ontario, Toronto.
4.
Brachman
,
R. W. I.
,
Moore
,
I. D.
, and
Rowe
,
R. K.
, “
Local Strain on a Leachate Collection Pipe
,”
Can. J. Civ. Eng.
, Vol.
27
,
2000
, pp.
1273
1285
. https://doi.org/10.1139/l00-074
5.
Cowland
,
J. W.
, “
The use of Geosynthetics in Landfills in Hong Kong
,”
Proceedings of the 2nd Asian Geosynthetics Conference
,
Kuala Lumpur, Malaysia
, May 29-31,
2000
, pp.
111
117
.
6.
Giroud
,
J. P.
,
Palmer
,
B.
, and
Dove
,
J. E.
, “
Calculation of Flow Velocity in Pipes as a Function of Flow Rate
,”
Geosynthet. Int.
, Vol.
7
, No.
4–6
,
2000
, pp.
583
600
.
7.
Dhar
,
A. S.
and
Moore
,
I.D.
, “
Liner Buckling in Profiled Polyethylene Pipes
,”
Geosynthet. Int.
, Vol.
8
, No.
4
,
2001
, pp.
303
326
.
8.
Panu
,
U. S.
and
Filice
,
A.
, “
Techniques of Flow Rates into Draintubes with Circular Perforations
,”
J. Hydrol.
, Vol.
137
,
1992
, pp.
57
72
. https://doi.org/10.1016/0022-1694(92)90048-Z
9.
Cedergren
,
H. R.
,
Seepage
,
Drainage and Flow Nets
, 3rd ed.,
John Wiley & Sons
,
New York
,
1989
.
10.
Brachman
,
R. W. I.
and
Krushelnitzky
,
R. P.
, “
Stress Concentrations Around Circular Holes in Perforated Drainage Pipes
,”
Geosynthet. Int.
, Vol.
9
, No.
2
,
2002
, pp.
189
213
.
11.
Hoeg
,
K.
, “
Stresses Against Underground Structural Cylinders
,”
ASCE J. Soil Mech. Found. Divi.
, Vol.
94
, No.
4
,
1968
, pp.
833
858
.
12.
Moore
,
I. D.
, “
Buried Pipes and Culverts
,”
Geotechnical and Geoenvironmental Engineering Handbook
,
R. K.
Rowe
, Ed.,
Kluwer Academic Publishers
,
London
,
2001
, pp.
541
567
.
13.
Brachman
,
R. W. I.
,
Moore
,
I. D.
, and
Rowe
,
R. K.
, “
The Performance of a Laboratory Facility for Evaluating the Structural Response Small Diameter Buried Pipes
,”
Can. Geotech. J.
, Vol.
38
, No.
2
,
2001
, pp.
260
275
. https://doi.org/10.1139/t00-102
14.
Brachman
,
R. W. I.
and
Krushelnitzky
,
R. P.
, “
Response of a Landfill Drainage Pipe Buried in a Trench
,”
Can. Geotech. J.
, Vol.
42
, No.
3
,
2005
, pp.
752
762
. https://doi.org/10.1139/t05-005
15.
Zhang
,
C.
and
Moore
,
I.D.
, “
Nonlinear Mechanical Response of High-density Polyethylene. Part I: Experimental Investigation and Model Evaluation
,”
Polym. Eng. Sci.
, Vol.
37
, No.
2
,
1997
, pp.
404
413
. https://doi.org/10.1002/pen.v37:2
16.
Zhang
,
C.
and
Moore
,
I. D.
, “
Nonlinear Mechanical Response of High-Density Polyethylene. Part II: Uniaxial Constitutive Modeling
,”
Polym. Eng. Sci.
, Vol.
37
, No.
2
,
1997
, pp.
414
420
. https://doi.org/10.1002/pen.v37:2
17.
Brachman
,
R. W. I.
, “
Mechanical Performance of Landfill Leachate Collection Pipes
,” Ph.D. thesis, Faculty of Engineering Science,
The Univ. of Western Ontario
, London, Ontario, Canada,
1999
.
18.
McGrath
,
T. J.
,
Moore
,
I. D.
, and
Hsuan
,
G. Y.
, “
Updated Test and Design Methods for Thermoplastic Pipe
,” NCHRP Report No. 631,
Transportation Research Board
,
2009
, WA, D.C.
19.
Krushelnitzky
,
R. P.
, Investigation of Physical, “
Temperature and Chemical Effects on the Short Term and Long Term Performance of High Density Polyethylene Pipe
,” Ph.D. thesis, Dept. of Civil Engineering,
Queen’s Univ.
, Kingston, Ontario, Canada,
2006
.
20.
Zekkos
,
D.
,
Bray
,
J. D.
,
Kavazanjian
,
E.
, Jr.
,
Matasovic
,
N.
,
Rathje
,
E. M.
,
Riemer
,
M. F.
, and
Stokoe
,
K. H.
 II
, “
Unit Weight of Municipal Solid Waste
,”
ASCE J. Geotech. Geoenv. Eng.
, Vol.
132
, No.
10
,
2006
, pp.
1250
1261
. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250)
21.
Krushelnitzky
R. P.
and
Brachman
R.W. I.
, “
Measured Deformations and Calculated Stresses of High-Density Polyethylene Pipes Under Very Deep Burial
,”
Can. Geotech. J.
, Vol.
46
, No.
6
,
2009
, pp.
650
664
. https://doi.org/10.1139/T09-011
22.
Selig
,
E. T.
, “
Soil Properties for Plastic Pipe Installations
.”
Buried Plastic Pipe Technology, ASTM STP 1093
,
G. S.
Buczala
and
M. J.
Cassady
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1990
, pp.
141
158
.
23.
Janson
,
L.
, “
Plastics Pipes- How Long Can They Last?
Report No. 4 from the Kontrollradet for Plasttror Council, KP Council,
1996
, pp. 39.
24.
Rowe
,
R. K.
,
Islam
,
M. Z.
, and
Hsuan
,
Y. G.
, “
Leachate Chemical Composition Effects on OIT Depletion in HDPE Geomembranes
,”
Geosynthet. Int.
, Vol.
15
, No.
2
,
2008
, pp.
136
151
. https://doi.org/10.1680/gein.2008.15.2.136
25.
Hsuan
,
Y. G.
and
Koerner
,
R. M.
, “
Antioxidant Depletion Lifetime in High Density Polyethylene Geomembranes
,”
ASCE J. Geotech. Geoenv. Eng.
, Vol.
124
, No.
6
,
1998
, pp.
532
541
. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(532)
26.
Krushelnitzky
R. P.
and
Brachman
R.W. I.
, “
Antioxidant Depletion in High-Density Polyethylene Pipes Exposed to Synthetic Leachate and Air
,”
Geosynthet. Int.
, Vol.
18
, No.
2
,
2011
, pp.
63
73
. https://doi.org/10.1680/gein.2011.18.2.63
27.
ASTM Standard E794-06
, “
Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2006
.
28.
ASTM Standard D3895-07
, “
Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2007
.
29.
ASTM Standard D5885-06
, “
Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
2006
.
30.
Rowe
,
R. K.
,
Rimal
,
S.
, and
Sangam
,
H. P.
, “
Ageing of HDPE Geomembrane Exposed to Air, Water and Leachate at Different Temperatures
,”
Geotext. Geomembr.
, Vol.
27
, No.
2
,
2009
, pp.
131
151
. https://doi.org/10.1016/j.geotexmem.2008.09.007
This content is only available via PDF.
You do not currently have access to this content.