Abstract

In order to get a better understanding of the mechanism governing hydrogen absorption behavior in Zr-based alloys, various characterization techniques were applied to the oxide layers of three alloys: Zry-2, GNF-Ziron (Zry-2-based alloy with ∼0.26 wt % Fe), and VB (Zr-based alloy containing ∼0.5 wt % Sn, ∼0.5 wt % Fe, and ∼1 wt % Cr). Out-of-pile corrosion tests were carried out in 400 °C steam and 290 °C LiOH water. For both tests, the hydrogen absorption decreased with higher iron content in the alloys, in the order of Zry-2>GNF-Ziron>VB, despite different kinetics of a parabolic law in the former test and a linear law in the latter test. The acceleration of hydrogen absorption in the LiOH water was ascribed to the formation of degraded or open grain boundaries up to locations very near the metal/oxide interface. The pre-transition steam oxides of 1.4–1.7 μm had a double layer structure composed of the outside non-protective oxide of monoclinic ZrO2 with faster diffusivity and the inside barrier layer of predominantly tetragonal ZrO2 with slower diffusivity. The thickness of the barrier layer of about 0.8–0.9 μm was not changed for the different alloys. The diffusion coefficient of deuterium in the VB oxide was approximately half of that in the GNF-Ziron oxide. This factor for the diffusivity was consistent with their hydrogen pickup performance. The higher compressive stress in the barrier layer was directly linked to the higher hydrogen pickup resistance of the alloys. Preferential dissolution of alloy elements from the second-phase particles (SPPs) into the oxide matrix was evinced for iron, and was very limited for chromium and nickel. These two elements had a tendency to exist as precipitates in the oxide layers, chromium mainly as oxide, and nickel mainly as metal. The superior hydrogen absorption performance of VB containing higher iron content and the SPPs with larger size and number density was attributable to the dissolved iron effect and higher compressive stress state generated from the delayed oxidation of the SPPs in the barrier layer.

References

1.
Hirano
,
Y.
,
Mozumi
,
Y.
,
Kamimura
,
K.
, and
Tsukuda
,
Y.
, “
Irradiation Characteristics of BWR High Burnup 9×9 Lead Use Assemblies
,”
Proc. of 2005 Water Reactor Fuel Performance Mtg.
, Kyoto, Japan, Oct. 2–5,
2005
,
Atomic Energy Society of Japan
,
Tokyo
.
2.
Shimada
,
S.
,
Etoh
,
Y.
,
Hayashi
,
H.
, and
Tsukuda
,
Y.
, “
A Metallographic and Fractographic Study of Outside-In Cracking Caused by Power Ramp Tests
,”
J. Nucl. Mater.
 0022-3115, Vol.
327
,
2004
, pp.
97
113
. https://doi.org/10.1016/j.jnucmat.2004.01.022
3.
Etoh
,
Y.
,
Shimada
,
S.
,
Adamson
,
R. B.
,
Yasuda
,
T.
,
Kogai
,
T.
, and
Ishii
,
Y.
, “
Irradiation Behavior of Zr Alloys for Ultra High Burnup Fuel
,”
Proc. of Int. Topical Mtg. on Light Water Reactor Fuel Performance
, Portland, OR,
1997
,
Americal Nuclear Society
,
IL
, pp.
211
218
.
4.
Ishimoto
,
S.
,
Kubo
,
T.
, and
Kubota
,
O.
, “
Development of New Zirconium Alloys for High Burnup Fuel
,”
Proc. of ENS Topfuel 2003, Wurtzburg
, Germany, March 16–19,
2003
,
European Nuclear Society
,
Brussels
.
5.
Takagawa
,
Y.
,
Ishimoto
,
S.
,
Etoh
,
Y.
,
Kubo
,
T.
,
Ogata
,
K.
, and
Kubota
,
O.
, “
The Correlation Between Microstructures and In-BWR Corrosion Behavior of Highly Irradiated Zr-Based Alloys
,”
14th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1467
, Stockholm,
2004
,
ASTM International
,
West Conshohocken, PA
, pp.
386
403
.
6.
Ishimoto
,
S.
,
Etoh
,
Y.
,
Matsumoto
,
T.
,
Lutz
,
D.
, and
Takagi
,
A.
, “
Improved Zr Alloys for High Burnup BWR Fuel
,”
Proc. of ENS Topfuel
, Salamanca, Spain, Oct. 22–25,
2006
,
European Nuclear Society
,
Brussels
.
7.
Aomi
,
M.
,
Etoh
,
Y.
,
Ishimoto
,
S.
,
Une
,
K.
, and
Ito
,
K.
, “
The Hydrogen Pick-Up Behavior for Zirconium-Based Alloys in Various Out-of-Pile Corrosion Test Conditions
,”
Proc. Topfuel 2009, Paris
, France, Sept. 6–10,
2009
,
European Nuclear Society
,
Brussels
.
8.
Une
,
K.
,
Ishimoto
,
S.
,
Sakamoto
,
K.
,
Etoh
,
Y.
,
Aomi
,
M.
, and
Ito
,
K.
, “
The Characterization of Oxide Layer of Zirconium-Based Alloys Focusing on Hydrogen Absorption Behavior
,”
Proc. Topfuel 2009, Paris
, France, Sept. 6–10,
2009
,
European Nuclear Society
,
Brussels
.
9.
Garzarolli
,
F.
,
Seidel
,
H.
,
Tricot
,
R.
, and
Gros
,
J. P.
, “
Oxide Growth Mechanism on Zirconium Alloys
,”
Ninth Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1132
, Kobe,
1991
,
ASTM International
,
West Conshohocken, PA
, pp.
395
415
.
10.
Beie
,
H. J.
,
Mitwalsky
,
A.
,
Garzarolli
,
F.
,
Ruhmann
,
H.
, and
Sell
,
H. J.
, “
Examinations of the Corrosion Mechanism of Zirconium Alloys
,”
10th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245
, Baltimore,
1994
,
ASTM International
,
West Conshohocken, PA
, pp.
615
643
.
11.
Pecheur
,
D.
,
Godlewski
,
J.
,
Peybernes
,
J.
,
Fayette
,
L.
,
Noe
,
M.
,
Frichet
,
A.
, and
Kerrec
,
O.
, “
Contribution to the Understanding of the Effect of the Water Chemistry on the Oxidation Kinetics of Zircaloy-4 Cladding
,”
12th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354
, Toronto,
2000
,
ASTM International
,
West Conshohocken, PA
, pp.
793
811
.
12.
Harada
,
M.
and
Wakamatsu
,
R.
, “
The Effect of Hydrogen on the Transition Behavior of the Corrosion Rate of Zirconium Alloys
,”
15th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1505
, Sunriver,
2009
,
ASTM International
,
West Conshohocken, PA
, pp.
384
402
.
13.
Wadman
,
B.
,
Lai
,
Z.
,
Andren
,
H. O.
,
Nystrom
,
A. L.
,
Rudling
,
P.
, and
Pettersson
,
H.
, “
Microstructure of Oxide Layers Formed During Autoclave Testing of Zirconium Alloys
,”
10th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245
, Baltimore,
1994
,
ASTM International
,
West Conshohocken, PA
, pp.
579
598
.
14.
Anada
,
H.
and
Takeda
,
K.
, “
Microstructure of Oxides on Zircaloy-4, 1.0Nb Zry-4 and Zry-2 Formed in 10.3MPa Steam at 673K
,”
11th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1295
, Garmisch-Partenkirchen,
1996
,
ASTM International
,
West Conshohocken, PA
, pp.
35
54
.
15.
Godlewski
,
J.
,
Bouvier
,
P.
,
Lucazeau
,
G.
, and
Fayette
,
L.
, “
Stress Distribution Measured by Raman Spectroscopy in Zirconia Films Formed by Oxidation of Zr-Based Alloys
,”
12th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354
, Toronto,
2000
,
ASTM International
,
West Conshohocken, PA
, pp.
877
900
.
16.
Sakamoto
,
K.
,
Une
,
K.
, and
Aomi
,
M.
, “
Chemical State of Alloying Elements in Oxide Layer of Zr-Based Alloys
,”
Proc. of 2010 LWR Fuel Performance TopFuel/WRFPM
, Orland, FL, Sept. 26–29,
2010
,
American Nuclear Society
,
IL
.
17.
Clarke
,
D. R.
and
Adar
,
F.
, “
Measurement of the Crystallographically Transformed Zone Produced by Fracture in Ceramics Containing Tetragonal Zirconia
,”
J. Am. Ceram. Soc.
 0002-7820, Vol.
65
, No.
6
,
1982
, pp.
284
288
. https://doi.org/10.1111/j.1151-2916.1982.tb10445.x
18.
Takagi
,
I.
,
Yoshida
,
K.
,
Shin
,
K.
, and
Higashi
,
K.
, “
A Combined Technique of Nuclear Reaction Analysis and Plasma-Driven Permeation for a Quantitative Study on Deuterium Trapping
,”
Nucl. Instrum. Methods Phys. Res. B
 0168-583X, Vol.
84
,
1994
, pp.
393
399
. https://doi.org/10.1016/0168-583X(94)95732-0
19.
Takagi
,
I.
,
Sugiura
,
R.
,
Shirai
,
K.
, and
Higashi
,
K.
, “
Deuterium Retention and Diffusion in ETP-10 Graphite Exposed to RF Plasma at Room Temperature
,”
Fusion Sci. Technol
, Vol.
41
,
2002
, pp.
902
906
.
20.
Motta
,
A. T.
,
Yilmazbayhan
,
A.
,
Comstock
,
R. J.
,
Partezana
,
J.
,
Sabol
,
G. P.
,
Lai
,
B.
, and
Cai
,
Z.
Microstructure and Growth Mechanism of Oxide Layers Formed on Zr Alloys Studied with Micro-Beam Synchrotron Radiation
,”
14th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1467
, Stockholm,
2004
,
ASTM International
,
West Conshohocken, PA
, pp.
205
232
.
21.
Pecheur
,
D.
,
Godlewski
,
J.
,
Billot
,
P.
, and
Thomazet
,
J.
, “
Microstructure of Oxide Films Formed During the Waterside Corrosion of the Zircaloy-4 Cladding in Lithiated Environment
,”
11th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1295
, Garmisch-Partenkirchen,
1996
,
ASTM International
,
West Conshohocken, PA
, pp.
94
113
.
22.
Zhou
,
B. X.
,
Li
,
Q.
,
Yao
,
Y.
,
Liu
,
W. Q.
, and
Chu
,
Y. L.
, “
Effect of Water Chemistry and Composition on Microstructural Evolution of Oxide on Zr Alloys
,”
15th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1505
, Sunriver,
2009
,
ASTM International
,
West Conshohocken, PA
, pp.
360
383
.
23.
Petigny
,
N.
,
Barberis
,
P.
,
Lemaignan
,
C.
,
Valot
,
Ch.
, and
Lallemant
,
M.
, “
In Situ XRD Analysis of the Oxide Layers Formed by Oxidation at 743 K on Zircaloy 4 and Zr-1NbO
,”
J. Nucl. Mater.
 0022-3115, Vol.
280
,
2000
, pp.
318
330
. https://doi.org/10.1016/S0022-3115(00)00051-9
24.
Takagi
,
I.
,
Une
,
K.
,
Miyamura
,
S.
, and
Kobayashi
,
T.
, “
Deuterium Diffusion in Steam-Corroded Oxide Layer of Zirconium Alloys
,”
J. Nucl. Mater
(submitted).
25.
Khatamian
,
D.
and
Manchester
,
F. D.
, “
An Ion Beam Study of Hydrogen Diffusion in Oxides of Zr and Zr-Nb (2.5 wt%)
,”
J. Nucl. Mater.
 0022-3115, Vol.
166
,
1989
, pp.
300
306
. https://doi.org/10.1016/0022-3115(89)90226-2
26.
Khatamian
,
D.
, “
Diffusion of Hydrogen in the Oxides of Zr-1Nb, Zr-2.5Nb and Zr-20Nb Alloys
,”
Z. Phys. Chem.
 0942-9352, Vol.
181
,
1993
, pp.
435
440
.
27.
Khatamian
,
D.
, “
Hydrogen Diffusion in Oxides Formed on Surfaces of Zirconium Alloys
,”
J. Alloys Compd.
 0925-8388, Vols.
253–254
,
1997
, pp.
471
474
. https://doi.org/10.1016/S0925-8388(96)03068-X
28.
McIntyre
,
N. S.
,
David
,
R. D.
,
Weisener
,
C. G.
,
Warr
,
B. D.
, and
Elmoselhi
,
M. B.
, “
SIMS Studies of Hydrogen Diffusion Through Oxides on Zr-Nb Alloys
,”
Surf. Interface Anal.
 0142-2421, Vol.
17
,
1991
, pp.
757
763
. https://doi.org/10.1002/sia.740171102
29.
Elmoselhi
,
M. B.
,
Warr
,
B. D.
, and
McIntyre
,
S.
, “
A Study of the Hydrogen Uptake Mechanism in Zirconium Alloys
,”
10th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245
, Baltimore,
1994
,
ASTM International
,
West Conshohocken, PA
, pp.
62
79
.
30.
Austin
,
J. H.
,
Elleman
,
T. S.
, and
Verghese
,
K.
, “
Tritium Diffusion in Zircaloy-2 in the Temperature Range −78 to 204°C
,”
J. Nucl. Mater.
 0022-3115 Vol.
51
,
1974
, pp.
321
329
. https://doi.org/10.1016/0022-3115(74)90197-4
31.
Kunz
,
W.
,
Munzel
,
H.
, and
Kunz
,
U.
, “
Tritium Release from Zircaloy-2: Dependence on Temperature, Surface Conditions and Composition of Surrounding Medium
,”
J. Nucl. Mater.
 0022-3115, Vol.
136
,
1985
, pp.
6
15
. https://doi.org/10.1016/0022-3115(85)90026-1
32.
Warr
,
B. D.
,
Elmoselhi
,
M. B.
,
Newcomb
,
S. B.
,
McIntyre
,
N. S.
,
Brennenstuhl
,
A. M.
, and
Lichtenberger
,
P. C.
, “
Oxide Characteristics and Their Relationship to Hydrogen Uptake in Zirconium Alloys
,”
Ninth Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1132
, Kobe,
1991
,
ASTM International
,
West Conshohocken, PA
, pp.
740
757
.
33.
Ramasubramanian
,
N.
and
Balakrishnan
,
P.
, “
Aqueous Chemistry of Lithium Hydroxide and Boric Acid and Corrosion of Zircaloy-4 and Zr-2.5Nb Alloys
,”
10th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245
, Baltimore,
1994
,
ASTM International
,
West Conshohocken, PA
, pp.
378
399
.
34.
Hillner
,
E.
and
Chirigos
,
J.N.
, “
The Effect of Lithium Hydroxide and Related Solutions on the Corrosion Rate of Zircaloy in 680 F Water
,” Report No. WAPD-TM307, Bettis Atomic Power Lab, PA,
1962
.
35.
Cox
,
B.
and
Wu
,
C.
, “
Dissolution of Zirconium Oxide Film in 300 °C LiOH
,”
J. Nucl. Mater.
 0022-3115, Vol.
199
,
1993
, pp.
272
284
. https://doi.org/10.1016/0022-3115(93)90148-R
36.
Outokumpu Reseach Oy
, Finland, http://www.outokumputechnology.com (Last accessed December 22,
2009
).
37.
Yoshimura
,
M.
,
Noma
,
T.
,
Kawabata
,
K.
, and
Somiya
,
S.
, “
Role of H2O on the Degradation Process of Y-TZP
,”
J. Mater. Sci. Lett.
 0261-8028, Vol.
6
,
1987
, pp.
465
467
. https://doi.org/10.1007/BF01756800
38.
Shannon
,
R. D.
, “
Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides
,”
Acta Crystallogr.
 1600-5368, Vol.
A32
,
1976
, pp.
751
767
.
39.
Pecheur
,
D.
,
Lefebvre
,
F.
,
Motta
,
A. T.
, and
Lemaignan
,
C.
, “
Precipitate Evolution in the Zircaloy-4 Oxide Layer
,”
J. Nucl. Mater.
 0022-3115, Vol.
189
,
1992
, pp.
318
332
. https://doi.org/10.1016/0022-3115(92)90385-X
40.
Takeda
,
T.
,
Harada
,
M.
,
Ishii
,
Y.
, and
Miyazaki
,
A.
, “
Effect of Metallographic Factor on Hydrogen Pick-Up Properties of Zircaloy-2
,”
J. Nucl. Sci. Technol.
 0022-3131, Vol.
43
, No.
9
,
2006
, pp.
984
990
. https://doi.org/10.3327/jnst.43.984
41.
Kakiuchi
,
K.
,
Itagaki
,
N.
,
Furuya
,
T.
,
Miyazaki
,
A.
,
Ishii
,
Y.
,
Suzuki
,
S.
,
Terai
,
T.
, and
Yamawaki
,
M.
, “
Role of Iron for Hydrogen Absorption Mechanism in Zirconium Alloys
,”
14th Int. Symposium on Zirconium in the Nuclear Industry, ASTM STP 1467
, Stockholm,
2004
,
ASTM International
,
West Conshohocken, PA
, pp.
349
366
.
42.
Kakiuchi
,
K.
,
Ohira
,
K.
,
Itagaki
,
N.
,
Otsuka
,
Y.
,
Ishii
,
Y.
, and
Miyazaki
,
A.
, “
Irradiated Behavior at High Burnup for HiFi Alloy
,”
J. Nucl. Sci. Technol.
 0022-3131, Vol.
43
, No.
9
,
2006
, pp.
1031
1036
. https://doi.org/10.3327/jnst.43.1031
This content is only available via PDF.
You do not currently have access to this content.