Abstract

This paper proposes a methodology for the health monitoring of structures capable of identifying the damage at the earliest possible stage using the acceleration time response data obtained from piezoelectric accelerometers. In this, a unique combination of databased models to extract the damage sensitive features and Shewhart control charts to monitor the variations of the selected damage sensitive features are presented. The applicability of the proposed method is tested with the welded structure model by fixing it to the multi axes electro dynamic vibration shaker. In this, damage will be defined as a crack through the thickness of the weld and damage was introduced into the structure by cutting a slot in the weld using electric discharge machining. The acceleration time response data from the test structure are measured for five damage levels. Damage sensitive features are extracted by fitting a time prediction databased model called an Auto Regressive model to the measured acceleration time response data obtained from the undamaged structure. Then, the residual errors are calculated at each time step. To monitor the variation of mean and standard deviation of the extracted damage sensitive features, X-bar and S control charts are used. It is found that X-bar and S charts are capable of identifying the presence of damage for different damage levels considered in this work.

References

1.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hemez
,
F. M.
,
Shunk
,
D. D.
,
Stinemates
,
D. W.
,
Nadler
,
B. R.
, and
Czarnecki
,
J. J.
, “
A Review of Structural Health Monitoring Literature: 1996–2001
,” Report No. LA-13976-MS, Los Alamos National Laboratory, Los Alamos, NM,
2004
.
2.
Trendafilova
,
I.
, “
Vibration-Based Damage Detection in Structures Using Time Series Analysis
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
 0954-4062, Vol.
220
, No.
3
,
2006
, pp.
261
272
. https://doi.org/10.1243/09544062C12904
3.
Ratnam
,
Ch.
,
Srinivas
,
J.
, and
Murthy
,
B. S. N.
, “
Damage Detection in Mechanical System Using Fourier Coefficients
,”
J. Sound Vib.
 0022-460X, Vol.
303
,
2007
, pp.
909
917
. https://doi.org/10.1016/j.jsv.2007.02.011
4.
Deraemaeker
,
A.
,
Reynders
,
E.
,
De Roeck
,
G.
, and
Kullaa
,
J.
, “
Vibration-Based Structural Monitoring Using Output-Only Measurements Under Changing Environment
,”
Mech. Syst. Signal Process.
 0888-3270, Vol.
22
,
2008
, pp.
34
56
. https://doi.org/10.1016/j.ymssp.2007.07.004
5.
Doherty
,
J. E.
, “
Nondestructive Evaluation
,”
Handbook on Experimental Mechanics
, Chap 12,
A. S.
Kobayashi
, Ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
,
1987
.
6.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
, “
A Review of Damage Identification Methods that Examine Changes in Dynamic Properties
,”
Shock Vib. Dig.
 0583-1024, Vol.
30
, No.
2
,
1998
, pp.
91
105
. https://doi.org/10.1177/058310249803000201
7.
Nichols
,
J. M.
,
Trickey
,
S. T.
,
Seaver
,
M.
,
Motley
,
S. R.
, and
Eisner
,
E. D.
, “
Using Ambient Vibrations to Detect Loosening of a Composite-to-Metal Bolted Joint in the Presence of Strong Temperature Fluctuations
,”
ASME J. Vibr. Acoust.
 0739-3717, Vol.
129
,
2007
, pp.
710
717
. https://doi.org/10.1115/1.2753502
8.
Hayes
,
M. H.
,
Statistical Digital Signal Processing and Modeling
,
John Wiley and Sons, Inc.
,
United Kingdom
,
2008
.
9.
Akaike
,
H.
, “
Fitting Autoregressive Models for Prediction
,”
Ann. Inst. Stat. Math.
 0020-3157, Vol.
21
,
1969
, pp.
243
247
. https://doi.org/10.1007/BF02532251
10.
Akaike
,
H.
, “
Information Theory and an Extension of the Maximum Likelihood Principle
,”
Second International Symposium on Information Theory
,
1973
,
Akademiai Kiado, Budapest, Hungary
,
Springer Verlag
, pp.
267
281
.
11.
Brockwell
,
P. J.
and
Davis
,
R. A.
,
Introduction to Time Series and Forecasting
,
Spinger-Verlag, Inc.
,
New York
,
2002
.
12.
Box
,
G. E.
,
Jenkins
,
G. M.
, and
Reinsel
,
G. C.
,
Time Series Analysis: Forecasting and Control
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
,
1994
.
13.
Hurvich
,
C. M.
and
Tasi
,
C. L.
, “
Regression and Time Series Model Selection in Small Samples
,”
Biometrika
 0006-3444, Vol.
76
,
1989
, pp.
297
307
. https://doi.org/10.1093/biomet/76.2.297
14.
Jones
,
R.H.
Fitting Auto-Regressions
,”
J. Am. Stat. Assoc.
 0003-1291, Vol.
70
,
1975
, pp.
590
592
. https://doi.org/10.2307/2285938
15.
Shibata
,
R.
, “
Selection of the Order of an Autoregressive Model by Akaike’s Information Criterion
,”
Biometrika
 0006-3444, Vol.
63
,
1976
, pp.
117
126
. https://doi.org/10.1093/biomet/63.1.117
16.
Basseville
,
M.
,
Mevel
,
L.
, and
Goursat
,
M.
, “
Statistical Model Based Damage Detection and Localization: Subspace-Based Residuals and Damage-to-Noise Sensitivity Ratios
,”
J. Sound Vib.
 0022-460X, Vol.
275
,
2004
, pp.
769
794
. https://doi.org/10.1016/j.jsv.2003.07.016
17.
Robertson
,
A. N.
,
Farrar
,
C. R.
, and
Sohn
,
H.
, “
Singularity Detection for Structural Health Monitoring Using Holder’s Exponent
,”
Mech. Syst. Signal Process.
 0888-3270, Vol.
17
, No.
6
,
2003
, pp.
1163
1184
. https://doi.org/10.1006/mssp.2002.1569
18.
Sohn
,
H.
,
Farrar
,
C. R.
,
Hunter
,
N. F.
, and
Worden
,
K.
, “
Structural Health Monitoring Using Statistical Pattern Recognition Techniques
,”
ASME J. Dyn. Syst., Meas., Control
 0022-0434, Vol.
123
, No.
4
,
2001
, pp.
706
711
. https://doi.org/10.1115/1.1410933
19.
Montgomery
,
D. C.
,
Introduction to Statistical Quality Control
, 4th ed.,
John Wiley and Sons (Asia) Pte, Ltd.
,
Singapore
,
2004
.
20.
Vommi
,
V. B.
and
Seetala
,
M. S. N.
, “
A Simple Approach for Robust Economic Design of Control Charts
,”
Comput. Oper. Res.
 0305-0548, Vol.
34
,
2007
, pp.
2001
2009
. https://doi.org/10.1016/j.cor.2005.06.023
This content is only available via PDF.
You do not currently have access to this content.