Abstract

An improved wall heat flux partitioning model at the heated surface was developed by Yeoh et al. This model, coupled with a three-dimensional two-fluid model and Multiple Size Group model, has led to satisfactory agreement being achieved between the model predictions and experimental measurements. Nevertheless, one shortcoming is the reliance on empirical correlations for the active nucleation site density in the wall heat flux partitioning model. This discrepancy brings about uncertainties, especially in appropriately evaluating the vapor generation rate, which greatly influences the model prediction on the axial and radial void fraction profiles within the bulk fluid flow. By considering the fractal model with the aforementioned subcooled boiling flow model in the absence of empirical correlations for the active nucleation site density, a comprehensive mechanistic model to predict vertically oriented subcooled boiling flows is developed. The proposed model is assessed against the experimental data of axial measurements of Zeitoun and Shoukri and the radial measurements of Yun et al. and Lee et al. for vertical subcooled boiling flows within annular channels. Improved model predictions are obtained when the model is compared against typically applied empirical correlations for active nucleation site density. Discussions on the agreement of other two-phase flow parameters are also presented.

References

1.
Yeoh
,
G. H.
and
Tu
,
J. Y.
, “
Population Balance Modelling for Bubbly Flows with Heat and Mass Transfer
,”
Chem. Eng. Sci.
 0009-2509, Vol.
59
,
2004
, pp.
3125
3139
. https://doi.org/10.1016/j.ces.2004.04.023
2.
Yeoh
,
G. H.
and
Tu
,
J. Y.
, “
Thermal-Hydrodynamic Modelling of Bubbly Flows with Heat and Mass Transfer
,”
AIChE J.
 0001-1541, Vol.
51
,
2005
, pp.
8
27
. https://doi.org/10.1002/aic.10297
3.
Yeoh
,
G. H.
and
Tu
,
J. Y.
, “
A Unified Model Considering Force Balances for Departing Vapour Bubbles and Population Balance in Subcooled Boiling
,”
Nucl. Eng. Des.
 0029-5493, Vol.
235
,
2005
, pp.
1251
1265
. https://doi.org/10.1016/j.nucengdes.2005.02.015
4.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part I—Model Development
,”
ASME Trans. J. Heat Transfer
 0022-1481, Vol.
127
,
2005
, pp.
131
140
. https://doi.org/10.1115/1.1842784
5.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part II—Model Validation
,”
ASME Trans. J. Heat Transfer
 0022-1481, Vol.
127
,
2005
, pp.
141
148
. https://doi.org/10.1115/1.1842785
6.
Sateesh
,
G.
,
Das
,
S. K.
, and
Balakrishnan
,
A. R.
, “
Analysis of Pool Boiling Heat Transfer: Effect of Bubbles Sliding on the Heating Surface
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
48
,
2005
, pp.
1543
1553
. https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.033
7.
Yeoh
,
G. H.
,
Cheung
,
S. C. P.
,
Tu
,
J. Y.
, and
Ho
,
M. K. M.
, “
Fundamental Consideration of Wall Heat Partition of Vertical Subcooled Boiling Flows
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
51
,
2008
, pp.
3840
3853
. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.047
8.
Xiao
,
B.
and
Yu
,
B.
, “
A Fractal Analysis of Subcooled Flow Boiling Heat Transfer
,”
Int. J. Multiphase Flow
 0301-9322, Vol.
33
,
2007
, pp.
1126
1139
. https://doi.org/10.1016/j.ijmultiphaseflow.2007.05.001
9.
Mikic
,
B. B.
and
Rohsenow
,
W. M.
, “
A New Correlation of Pool Boiling Data Including the Effect of Surface Characteristics
,”
ASME Trans. J. Heat Transfer
 0022-1481, Vol.
91
,
1969
, pp.
245
250
.
10.
Juhov
,
K. A.
, “
Nucleations Number During Steam Production
,”
Aerodynamics and Heat Transfer in the Working Elements of the Power Facilities, Proc. CKTI
, Leningrad, Russia, Vol.
91
,
1969
, pp.
131
135
.
11.
Cornwell
,
K.
and
Brown
,
R. D.
, “
Boiling Surface Topography
,”
Proceedings of Sixth Heat Transfer Conference
, Toronto, Canada,
1978
,
ASME
,
New York
, Vol.
1
, pp.
157
161
.
12.
Lemmert
,
M.
and
Chwala
,
J. M.
,
Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient
,
Academic Press/Hemisphere
,
New York/Washington, D.C.
,
1977
.
13.
Kurul
,
N.
and
Podowski
,
M. Z.
, “
Multi-Dimensional Effects in Forced Convection Sub-Cooled Boiling
,”
Proceedings of the Ninth Heat Transfer Conference
, Jerusalem, Israel,
1990
,
Hemisphere Publishing Corporation
,
Bristol, PA
, pp.
21
26
.
14.
Končar
,
B.
,
Kljenak
,
I.
, and
Mavko
,
R.
, “
Modeling of Local Two-Phase Flow Parameters in Upwards Subcooled Flow Boiling at Low Pressure
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
47
,
2004
, pp.
1499
1513
. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.021
15.
Kirby
,
D. B.
and
Westwater
,
J. W.
, “
Bubble and Vapour Behaviour on a Heated Horizontal Plate During Pool Boiling near Burnout
,”
Chem. Eng. Prog., Symp. Ser.
 0069-2948, Vol.
57
,
1965
, pp.
238
248
.
16.
Kocamustafaogullari
,
G.
and
Ishii
,
M.
, “
Interfacial Area and Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
26
,
1983
, pp.
1377
1387
. https://doi.org/10.1016/S0017-9310(83)80069-6
17.
Fritz
,
W.
, “
Berechnung Des Mzximalen Volumens Von Dampfblasen
,”
Phys. Z.
 0369-982X, Vol.
36
,
1935
, pp.
379
384
.
18.
Hibiki
,
T.
and
Ishii
,
M.
, “
Active Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
46
,
2003
, pp.
2587
2601
. https://doi.org/10.1016/S0017-9310(03)00031-0
19.
Yu
,
C.
and
Cheng
,
P.
, “
A Fractal Model for Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
, Vol.
124
,
2002
, pp.
1117
1124
.
20.
Hsu
,
Y. Y.
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
, Vol.
84
,
1962
, pp.
207
215
.
21.
Kenning
,
D. B. R.
and
Victor
,
H. D. V. M.
, “
Fully Developed Nucleate Boiling: Overlap of Ares of Influence and Interference Between Bubble Sites
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
24
,
1981
, pp.
1025
1032
. https://doi.org/10.1016/0017-9310(81)90133-2
22.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
, “
Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling
,”
ASME Trans. J. Heat Transfer
 0022-1481, Vol.
124
,
2002
, pp.
717
728
. https://doi.org/10.1115/1.1471522
23.
Maity
,
S.
,
2000
, “
Effect of Velocity and Gravity on Bubble Dynamics
,” M.S. thesis,
University of California
, Los Angeles, CA.
24.
Anglart
,
H.
and
Nylund
,
O.
, “
CFD Application to Prediction of Void Distribution in Two-Phase Bubbly Flows in Rod Bundles
,”
Nucl. Sci. Eng.
 0029-5639, Vol.
163
,
1996
, pp.
81
98
. https://doi.org/10.1016/0029-5493(95)01160-9
25.
Lahey
,
R. T.
, Jr.
and
Drew
,
D. A.
, “
The Analysis of Two-Phase Flow and Heat Transfer Using Multidimensional, Four Field, Two-Fluid Model
,”
Nucl. Eng. Des.
 0029-5493, Vol.
204
,
2001
, pp.
29
44
. https://doi.org/10.1016/S0029-5493(00)00337-X
26.
Ishii
,
M.
and
Zuber
,
N.
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
 0001-1541, Vol.
25
,
1979
, pp.
843
855
. https://doi.org/10.1002/aic.690250513
27.
Wang
,
S. K.
,
Lee
,
S. J.
,
Lahey
,
R. T.
, Jr.
, and
Jones
,
O. C.
, “
3-D Turbulence Structure and Phase Distribution Measurements in Bubbly Two-Phase Flows
,”
Int. J. Multiphase Flow
 0301-9322, Vol.
13
,
1987
, pp.
327
343
. https://doi.org/10.1016/0301-9322(87)90052-8
28.
Antal
,
S. P.
,
Lahey
,
R. T.
, Jr.
, and
Flaherty
,
J. E.
, “
Analysis of Phase Distribution and Turbulence in Dispersed Particle/Liquid Flows
,”
Chem. Eng. Commun.
 0098-6445, Vol.
174
,
1991
, pp.
85
113
.
29.
Sato
,
Y.
,
Sadatomi
,
M.
, and
Sekoguchi
,
K.
, “
Momentum and Heat Transfer in Two-Phase Bubble Flow—I. Theory
,”
Int. J. Multiphase Flow
 0301-9322, Vol.
7
,
1981
, pp.
167
177
. https://doi.org/10.1016/0301-9322(81)90003-3
30.
Prince
,
M. J.
and
Blanch
,
H. W.
, “
Bubble Coalescence and Break-Up in Air-Sparged Bubble Column
,”
AIChE J.
 0001-1541, Vol.
36
,
1990
, pp.
1485
1499
. https://doi.org/10.1002/aic.690361004
31.
Luo
,
H.
and
Svendsen
,
H.
, “
Theoretical Model for Drop and Bubble Break-Up in Turbulent Dispersions
,”
AIChE J.
 0001-1541, Vol.
42
,
1996
, pp.
1225
1233
. https://doi.org/10.1002/aic.690420505
32.
Zeitoun
,
O.
and
Shoukri
,
M.
, “
Bubble Behaviour and Mean Diameter in Subcooled Flow Boiling
,”
ASME Trans. J. Heat Transfer
 0022-1481, Vol.
118
,
1996
, pp.
110
116
. https://doi.org/10.1115/1.2824023
33.
Yun
,
B. J.
,
Park
,
G.-C.
,
Song
,
C. H.
, and
Chung
,
M. K.
, “
Measurements of Local Two-Phase Flow Parameters in a Boiling Flow Channel
,”
Proceedings of the NEA/CSNI/R(97)32 Specialist Meeting on Advanced Instrumentation and Measurement Techniques
, Santa Barbara, CA, 17-20 March
1997
,
OECD/CSNI
.
34.
Lee
,
T. H.
,
Park
,
G.-C.
, and
Lee
,
D. J.
, “
Local Flow Characteristics of Subcooled Boiling Flow of Water in a Vertical Annulus
,”
Int. J. Multiphase Flow
 0301-9322, Vol.
28
,
2002
, pp.
1351
1368
. https://doi.org/10.1016/S0301-9322(02)00026-5
This content is only available via PDF.
You do not currently have access to this content.