Abstract

Quenching is an essential part of the thermal process used for the manufacture of metallic parts. Quenching involves rapid cooling of a metal from an austenitizing temperature to a lower temperature; usually, but not necessarily, room temperature. The quenching process is typically accompanied by thermal and transformational stresses, which are the main causes for most quenching failures. Any failures or defects during the quenching process result in excessive waste and an often unacceptable increase in the overall production cost. Prevention and elimination of quenching failures are of great significance especially with respect to the rational utilization of energy and resources and the reduction of carbon emissions. Therefore, the quenching method and quenching medium are among the most important factors to be considered in the design of the manufacturing process. The objective of this paper is to discuss quenching failures and to analyze their causes. Counter-measures for prevention of quenching failures and a new criterion for quenchant selection are also suggested.

References

1.
Liscic
,
B.
,
Tensi
,
H. M.
, and
Luly
,
W.
,
Theory and Technology of Quenching
,
Springer-Verlag
,
Berlin, Heidelberg
,
1992
, p. 150.
2.
Von Bergen
,
R. T.
, “
The Effects of Quenchant Media Selection on the Distortion of Engineered Steel Parts
,”
Quenching and Distortion Control
,
G. E.
Totten
, Ed.,
ASM International
,
Materials Park, OH
,
1992
, pp.
275
282
.
3.
Koistinen
,
D. P.
and
Marburger
,
R. E.
, “
A General Equation Prescribing the Extent of Austenite-Martensite Transformation in Pure Iron—Carbon Alloys and Plain Carbon Steels
,”
Acta Metall.
 0001-6160, Vol.
7
,
1959
, pp.
59
60
. https://doi.org/10.1016/0001-6160(59)90170-1
4.
Canale
,
L. C. F.
and
Totten
,
G. E.
, “
Steel Heat Treatment Failures Due to Quenching
,”
Failure Analysis of Heat Treated Steel Components
,
ASM International
,
Materials Park, OH
,
2008
, pp.
255
284
.
5.
Qi
,
Z.
,
Principles of Heat Treatment of Metals
,
Mechanical Industry Press
,
Beijing
,
1987
, p. 78.
6.
Narazaki
,
M.
,
Totten
,
G. E.
, and
Webster
,
G. M.
, “
Hardening by Reheating and Quenching
,”
Handbook of Residual Stress and Deformation of Steel
,
ASM International
,
Materials Park, OH
,
2002
,
248
295
.
7.
Liu
,
Z.
, “
Quenching Cracking and Its Prevention
,”
Heat Treat.
, Vol.
25
, No.
3
,
2010
, pp.
72
79
.
8.
Stolar
,
P.
,
Jurci
,
P.
, and
Klima
,
F.
, “
The Effect of Oil Quenching Parameters Distortion of Gear Wheels
,”
Conf. Proceed. Third International Conference on Quenching and Control of Distortion
,
1999
,
ASM International
,
Materials Park, OH
, pp.
425
431
.
9.
Liu
,
K.
,
Xu
,
X.
, and
Su
,
Y.
, “
Classification and Discussion on Quenching Cracks
,”
Phys.l Test. Chem. Anal.–Part A: Phys. Test.
, Vol.
41
, No.
ZL
,
2005
, pp.
108
111
.
10.
Yang
,
G.
,
Liang
,
Y.
,
Zou
,
Z.
,
Tian
,
Z.
, and
Dai
,
Y.
, “
Quenching Cracking Reason Analysis of Spring Using for Train Buffer
,”
Mater. Mech. Eng.
, Vol.
33
, No.
8
,
2009
, pp.
96
99
.
11.
Blackwood
,
R. R.
,
Jarvis
,
L. M.
,
Hoffman
,
D. G.
, and
Totten
,
G. E.
, “
Conditions Leading to Quench Cracking Other Than Severity of Quench; Quench Cracking in Spring Steels
,”
Springs
,
2007
, pp.
47
49
.
12.
Wu
,
C.
, “
Analysis on Quench Crack of Gears
,”
Metal’s Process.-Heat Treat.
, Vol.
13
,
2008
, pp.
30
31
.
13.
Fu
,
J.
,
Dai
,
L.
, and
Yan
,
L.
, “
Analysis and Precaution of Quench Cracks for Large Work-Pieces
,”
Mech. Worker-Heat Treat.
, Vol.
7
,
2007
, p. 34.
14.
Cong
,
Z.
, “
Cracking Analysis on 9Cr2 Steel Roller
,”
Heat Treat. Met.
 0305-4829, Vol.
29
, No.
7
,
2004
, pp.
83
85
.
15.
Totten
,
G. E.
,
Bates
,
C. E.
, and
Clinton
,
N. A.
,
Handbook of Quenchants and Quenching Technology
,
ASM International
,
Materials Park, OH
,
1993
, p. 446.
16.
Zou
,
Z.
,
Ma
,
A.
,
Song
,
D.
,
Jiang
,
J.
,
Gong
,
M.
, and
Gao
,
Y.
, “
Failure Analysis on Quenching Cracking of RM-2 Hot-Working Die Steel
,”
Heat Treat. Met.
 0305-4829, Vol.
32
, No.
12
,
2007
, pp.
100
102
.
17.
Jin
,
R.
, “
Analysis on Quenching Distortion and Crack of 22CrMoH Steel Gears and Its Counter Measures
,”
Heat Treat. Met.
 0305-4829, Vol.
30
, No.
5
,
2005
, pp.
86
89
.
18.
Chen
,
R.
and
Luo
,
X.
, “
Control of Distortion Due to Quenching Process of Steel Parts
,”
Heat Treat. Technol. Equip.
, Vol.
27
, No.
1
,
2006
, pp.
18
22
.
19.
Liscic
,
B.
,
Tensi
,
H. M.
,
Totten
,
G. E.
, and
Webster
,
G. M.
, “
Non-Lubricating Process Fluids: Steel Quenching Technology
,”
Fuels and Lubricants Handbook: Technology, Properties, Performance and Testing
,
G. E.
Totten
,
S. R.
Westbrook
, and
R. J.
Shah
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2003
, pp.
587
634
.
20.
Leidenfrost
,
G. J.
, “
De Aqua Communis Nonnullis Tractus [On the Fixation of Water in Diverse Fire]
,”
Int. J. Heat Mass Transfer
 0017-9310, Vol.
9
,
1966
, pp.
1153
1166
. https://doi.org/10.1016/0017-9310(66)90111-6
21.
Kunzel
,
T.
, “
Influence of Re-Wetting on Allotropic Transformation of Quenched Metal-Piece
,” Dissertation, Faculty for Mechanical Engineering,
Technical University of Munich
,
1986
, p. 138.
22.
Liscic
,
B.
,
Tensi
,
H. M.
, and
Luly
,
W.
,
Theory and Technology of Quenching
,
Springer-Verlag
,
Berlin, Heidelberg
,
1992
, p. 155.
23.
Canale
,
L. C. F.
,
Luo
,
X.
,
Yao
,
X.
, and
Totten
,
G. E.
, “
Quenchant Characterization by Cooling Curve Analysis
,”
J. ASTM Int.
 1546-962X, Vol.
6
, No.
2
,
2009
, pp.
861
899
.
24.
ISO 9950:
1995
, “
Industrial Quenching Oils-Determination of Cooling Characteristics-Nickel-Alloy Probe Test Method
,” 1995-95-01
25.
ANSI/ASTM D6200-
2001
, “
Test Method for Determination of Cooling Characteristics of Quench Oils by Cooling Curve Analysis
,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
26.
ASTM D6549-06, “
Standard Test Method for Determination of Cooling Characteristics of Quenchants by Cooling Curve Analysis with Agitation (Drayton Unit)
,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
27.
ASTM D6482-06, “
Standard Test Method for Determination of Cooling Characteristics of Aqueous Polymer Quenchants by Cooling Curve Analysis with Agitation (Tensi Method)
,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
28.
Tensi
,
H. M.
and
Steffen
,
E.
, “
Measuring of the Quenching Effect of Liquid Hardening Agents on the Basis of Synthetics
,”
Steel Res.
 0177-4832, Vol.
56
,
1985
, pp.
489
496
.
29.
Luo
,
X.
and
Li
,
J.
, “
Effects of Cooling Rate Fluctuation on Cooling and Transformation Behavior of Steel upon Direct Quenching
,”
J. ASTM Int.
 1546-962X, Vol.
6
, No.
2
,
2009
, pp.
935
952
.
30.
Totten
,
G. E.
,
Bates
,
C. E.
, and
Clinton
,
N. A.
,
Handbook of Quenchants and Quenching Technology
,
ASM International
,
Materials Park, OH
,
1993
, p. 318.
31.
GB/T 3077-
1999
, “
Nation Standard of P. R. China: Alloy Structure Steels
,” General Administration of Quality Supervision, Inspection and Quarantine of the P. R. China.
32.
Kong
,
X.
,
Ma
,
R.
,
Yu
,
H.
,
Liu
,
J.
,
Zhang
,
X.
, and
Yang
,
Z.
, “
Analysis on Quenching Crack of 40CrMnMo Steel Center Tube and Its Countermeasures
,”
Heat Treat. Met.
 0305-4829, Vol.
35
, No.
2
,
2010
, pp.
91
93
.
33.
Li
,
Y.
,
Liu
,
Y.
,
Zhao
,
J.
,
Zou
,
X.
, and
Tang
,
Y.
, “
Analysis of Quenching Crack on P110 Oil Casing Pipe
,”
Heat Treat. Met.
 0305-4829, Vol.
35
, No.
5
,
2010
, pp.
88
92
.
34.
Zhou
,
D.
, “
Quench Cracking Analysis of S45C Steel Parts
,”
Heat Treat. Met.
 0305-4829, Vol.
32
, No.
4
,
2007
, pp.
92
94
.
35.
Zhu
,
G.
and
Zhan
,
X.
, “
Analysis and Countermeasures of Quenching Cracks of Components (2). Mechanical Worker—Hot-Working
,” Special issue: Research and Application,
2004
, pp.
52
53
.
36.
MacKenzie
,
D. S.
,
Totten
,
G. E.
, and
Gopinath
,
N.
, “
CFD Modelling of Quench Tank Agitation
,”
Proceed. of the 10th Congress of the IFHT
,
1999
,
T.
Bell
and
E. J.
Mittemeijer
, Eds.,
IOM Communications, Ltd.
,
London, England
, pp.
655
669
.
37.
Totten
,
G. E.
,
Webster
,
G. M.
, and
Gopinath
,
N.
Quenching Fundamentals: Effect of Agitation
,”
Adv. Mat.& Proc.
, Vol.
2
,
1996
, pp.
73
76
.
38.
MacKenzie
,
D. S.
,
Kumar
,
A.
,
Metwally
,
H.
,
Paingankar
,
S.
,
Li
,
Z.
, and
Ferguson
,
B.
, “
Prediction of Distortion of Automotive Pinion Gears During Quenching Using CFD and FEA
,”
J. ASTM Int.
 1546-962X, Vol.
6
, No.
1
,
2009
, pp.
450
463
.
39.
Canale
,
L. C. F.
and
Totten
,
G. E.
, “
Eliminate Quench Cracking with Uniform Agitation
,”
Heat Treating Progress
, Vol.
4
, No.
4
,
2004
, pp.
27
30
.
40.
Kobasko
,
N. I.
,
Aronov
,
M. A.
,
Powell
,
J. A.
, and
Totten
,
G. E.
,
Manual 64–Intensive Quenching Systems: Engineering and Design
,
ASTM International
,
West Conshohocken, PA
,
2010
.
41.
Kobasko
,
N. I.
, “
The Superstrengthening Phenomenon
,”
J. ASTM Int.
 1546-962X, Vol.
2
, No.
2
,
2005
, pp.
101
113
.
42.
Kobasko
,
N. I.
,
Aronov
,
M. A.
,
Powell
,
J. A.
, and
Totten
,
G. E.
, “
One More Discussion “What is Intensive Quenching Process?
,”
J. ASTM Int.
 1546-962X, Vol.
6
, No.
1
,
2009
, pp.
629
643
.
43.
Kobasko
,
N. I.
,
Arpnov
,
M. A.
,
Totten
,
G. E.
, and
Sverdlin
,
A. V.
,
Method and Equipment for Implementation of Intensive Quenching
,
ASM International
,
Materials Park, OH
,
1998
, pp.
616
621
.
44.
ASTM D6710-01(
2007
), “
Standard Guide for Evaluation of Hydrocarbon-Based Quench Oils
,” Annual Book of ASTM Standards, Vol.
05.01
, ASTM International, West Conshohocken, PA.
45.
ASTM D6666-01(
2001
), “
Standard Guide for Evaluation of Aqueous Polymer Quenchants
,” Annual Book of ASTM Standards, Vol.
05.01
, ASTM International, West Conshohocken, PA.
46.
Chen
,
N.
and
Zhang
,
W.
, “
Application of Digitalized Quenching Cooling-Control Technology
,”
Heat Treat. Met.
 0305-4829, Vol.
33
, No.
1
,
2008
, pp.
57
62
.
47.
Chen
,
N.
,
Zuo
,
X.
,
Zhou
,
S.
, and
Xu
,
J.
, “
Technology and Applications of Alternately Timed Quenching Technology
,”
J. ASTM Int.
 1546-962X, Vol.
6
, No.
2
,
2009
, pp.
622
628
.
48.
Chen
,
C.
,
Wang
,
X.
,
Zhang
,
W.
, and
Zhou
,
J.
, “
Application of Polymer Quenchant
,”
Chinese J. Nonferrous Metals.
, Vol.
11
, No.
2
,
2001
, pp.
25
28
.
49.
Jarvis
,
L. M.
,
Blackwood
,
R. R.
, and
Totten
,
G. E.
, “
Thermal Separation of Polymer Quenchants for More Efficient Heat Treatments
,”
Ind. Heat.
 0019-8374, Vol.
56
, No.
11
,
1989
, pp.
23
24
.
50.
Totten
,
G. E.
,
Webster
,
G. M.
, and
Blackwood
,
R. R.
, “
Chute Quench Design Recommendations
,”
Heat Trans. Res.
, Vol.
30
, No.
4
,
1999
, pp.
303
310
.
51.
Canale
,
L. C. F.
and
Totten
,
G. E.
, “
Eliminate Quench Cracking with Uniform Agitation
,”
Heat Treat. Progress.
, Vol.
4
, No.
4
,
2004
, pp.
27
30
.
52.
Totten
,
G. E.
,
Webster
,
G. M.
,
Blackwood
,
R. R.
,
Jarvis
,
L. M.
, and
Narumi
,
T.
, “
Chute Quench Recommendations for Continuous Furnace Applications with Aqueous Polymer Quenchants
,”
Heat Treat. Met.
 0305-4829, Vol.
23
, No.
2
,
1996
, pp.
36
39
.
53.
de Souza
,
E. C.
,
Fernandes
,
M. R.
,
Augustinho
,
S. C. M.
,
Canale
,
L. C. F.
, and
Totten
,
G. E.
, “
Comparison of Structure and Quenching Performance of Vegetable Oils
,”
J. ASTM Int.
 1546-962X, Vol.
6
, No.
9
,
2009
, pp.
531
570
.
54.
Canale
,
L. C. F.
,
Fernandes
,
M. R.
,
Agustinho
,
S. C. M.
,
Totten
,
G. E.
, and
Farah
,
A. F.
, “
Oxidation of Vegetable Oils and Its Impact on Quenching Performance
,”
Int. J. Mater. Prod. Technol.
 0268-1900, Vol.
24
, No.
1–4
,
2005
, pp.
101
125
. https://doi.org/10.1504/IJMPT.2005.007943
This content is only available via PDF.
You do not currently have access to this content.