Abstract

The inertia friction welding process is being extensively investigated for the joining of high strength titanium alloys for aerospace applications. Although it offers solid state joining, the thermal cycle and deformation involved results in microstructural inhomogeneity across the weld interface. In this paper, the fatigue crack propagation behavior in an inertia welded microstructure in a high strength, high temperature α/β titanium alloy is considered. The fatigue crack propagation behavior in corner notched weld specimens at varying stress ratios is studied at room and elevated temperatures and compared with that of the parent material. Fatigue crack growth rates at lower stress intensity ranges are comparable with those in the parent material. However, in weld specimens tested at room temperature, unstable crack growth occurs at lower stress intensity range values compared to that at high temperature. Fracture surface observations show that this difference is related to a change in fracture mode from transgranular to intergranular/mixed mode during room temperature tests. This change in fatigue crack growth mechanism is deduced to be due to low ductility intergranular failure of grain boundary α in the refined transformed beta microstructure across the weld interface.

References

1.
Kallee
,
S. W.
,
Nicholas
,
E. D.
, and
Russell
,
M. J.
, “
Friction Welding of Aero Engine Components
,”
Tenth World Conference on Titanium
, Hamburg, Germany, 13–18 July
2003
,
Gerd
Luetjering
and
Joachim
Albrecht
, eds.,
Wiley VCH
,
Weinheim, Germany
, pp.
2867
2874
.
2.
Smith
,
L. S.
,
Threadgill
,
P.
, and
Gittos
,
M.
,
Welding Titanium: A Guide to Best Practice
,
The Welding Institute
,
Cambridge
,
1999
, http://www.twi.co.uk/content/bpweldtis01.html (Last accessed 21 June 2009).
3.
Wang
,
K. K.
, “
Friction Welding
,”
Weld. Res. Counc. Bull.
 0043-2326, Vol.
204
,
1975
, pp.
1
21
.
4.
Nessler
,
C. G.
,
Turz
,
D. A.
,
Eng
,
R. D.
, and
Vozzella
,
P. A.
, “
Friction Welding of Titanium Alloys
,”
Weld. J. Res. Suppl.
, Vol.
50
,
1971
, pp.
379
385
.
5.
English
,
C. L.
, “
Inertia Welding of Jet Engine Components: Transitions from Electron Beam Welding to Inertia Welding of Titanium Alloy Fan Disk
,”
Proceedings of FABTECH International ’95
, Rosemont, Chicago, IL,
1995
, Vol. 2, pp.
1237
1250
.
6.
Barussaud
,
A.
and
Prieur
,
A.
, “
Structure and Properties of Inertia Welded Assemblies of Ti Based Alloy Disks
,”
Proceedings of the Eighth World Conference on Titanium
, Birmingham, United Kingdom, 22–26 October
1995
,
P. A.
Blenkinsop
,
W. J.
Evans
, and
H. M.
Flower
, eds.,
Institute of Materials
,
London, UK
, pp.
798
804
.
7.
Baeslack
,
W. A.
,
Phillips
,
D.
,
English
,
C.
, and
Woodfield
,
A. P.
, “
Inertia-Friction Welding of an Advanced Rapidly Solidified Titanium Alloy
,”
J. Mater. Sci. Lett.
 0261-8028, Vol.
10
,
1991
, pp.
1401
8
. https://doi.org/10.1007/BF00735692
8.
Roder
,
O.
,
Helm
,
D.
, and
Luetjering
,
G.
, “
Microstructure and Mechanical Properties of Inertia and Electron Beam Welded Ti-6246
,”
Tenth World Conference on Titanium
, Hamburg, Germany, 13–18 July
2003
,
Gerd
Luetjering
and
Joachim
Albrecht
, eds.,
Wiley VCH
,
Weinheim, Germany
, pp.
2875
2882
.
9.
Roder
,
O.
,
Ferte
,
J. P.
,
Gach
,
E.
,
Mendez
,
J.
,
Anglada
,
M.
, and
Mateo
,
A.
, “
Development and Validation of A Dual Titanium Alloy Dual Microstructure BLISK
,”
Fifth Aeronautic Days 2006
,
MTU Aero Engines
,
Vienna, Austria
,
2006
.
10.
Attallah
,
M. A.
and
Preuss
,
M.
,
2009
,
Metallurgical and Residual Stress Characterisation of Ti-6246 Inertia Friction Welds
,
Rolls-Royce Plc.
,
Derby, United Kingdom
, p. 23.
11.
Pickard
,
A. C.
,
The Application of 3-Dimentional Finite Element Methods to Fracture Mechanics Life Prediction
,
EMAS
,
Warley, United Kingdom
,
1986
, pp.
81
144
.
12.
Powell
,
B. E.
, “
Fatigue Crack Growth Behaviour of Two Contrasting Titanium Alloys
,”
Int. J. Fatigue
 0142-1123, Vol.
17
,
1995
, pp.
221
227
. https://doi.org/10.1016/0142-1123(95)98943-W
13.
Hall
,
R. F.
and
Powell
,
B. E.
, “
The Growth of Corner Cracks by Fatigue
,”
Int. J. Fatigue
 0142-1123, Vol.
19
,
1997
, pp.
429
35
. https://doi.org/10.1016/S0142-1123(96)00092-8
14.
Brooks
,
R. R.
and
Rainforth
,
W. M.
, “
Effect of Microstructure on the Morphology of Fatigue Cracks in UDIMET 720
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
23
,
2000
, pp.
725
736
. https://doi.org/10.1046/j.1460-2695.2000.00339.x
15.
Brooks
,
R. R.
and
Rainforth
,
W. M.
, “
Fatigue Damage Mechanisms Associated with ‘Tear-Drop’ Cracking in UDIMET 720
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
22
,
1999
, pp.
821
829
.
16.
Rolls-Royce,
1995
, “
Crack Propagation in Corner Crack Test Pieces: Test Procedure, Rolls Royce Plc.
,” Document MMM31002, Derby, United Kingdom.
17.
BS 6835-1:1998, December
1998
, “
Method for the Determination of the Rate of Fatigue Crack Growth in Metallic Materials. Part 1: Fatigue Crack Growth Rates of Above 10−8 m per Cycle
,” BSI, London, UK, p. 30.
18.
Halliday
,
M. D.
and
Beevers
,
C. J.
, “
The D. C. Electrical Potential Method for Crack Length Measurement
,”
The Measurement of Crack Length and Shape During Fracture and Fatigue
,
C. J.
Beevers
, Ed.,
EMAS
,
Warley, United Kingdom
,
1980
, pp.
85
112
.
19.
Sauer
,
C.
and
Luetjering
,
G.
, “
Thermo-Mechanical Processing of High Strength β-Titanium Alloys and Effects on Microstructure and Properties
,”
J. Mater. Process. Technol.
 0924-0136, Vol.
117
,
2001
, pp.
311
317
. https://doi.org/10.1016/S0924-0136(01)00788-9
20.
Hall
,
J. A.
and
Pierce
,
C. M.
, “
Property-Microstructure Relationships in the Ti-6AI-2Sn-4Zr-6Mo Alloy
,”
Mater. Sci. Eng.
 0025-5416, Vol.
9
,
1972
, pp.
197
210
. https://doi.org/10.1016/0025-5416(72)90034-1
21.
Fine
,
M. E.
,
Chung
,
Y.-W.
, and
McCormick
,
R. R.
Fatigue Failures in Metals
,”
Fatigue and Fracture: ASM Handbook
,
ASM International
,
Metals Park, OH
,
1996
, Vol.
19
, pp.
63
72
.
22.
Suresh
,
S.
,
Fatigue of Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
,
2004
, pp.
331
382
.
23.
Miles
,
C. J.
, personal communication, School of Metallurgy and Materials, University of Birmingham, United Kingdom,
2008
.
24.
Baeslack
,
W. A.
 III
, and
Mahajan
,
Y.
, “
Intergranular Fracture of Heat-Treated Weldments in a High-Strength Alpha-Beta Titanium Alloy
,”
Scr. Metall.
 0036-9748, Vol.
13
,
1979
, pp.
959
964
. https://doi.org/10.1016/0036-9748(79)90328-4
25.
Shaniavski
,
A. A.
,
Losey
,
A. I.
, and
Banov
,
M. D.
, “
Development of Fatigue Cracking in Aircraft Engine Compressor Disks of Titanium Alloy Ti-6Al-3Mo-2Cr
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
21
,
1998
, pp.
297
313
. https://doi.org/10.1046/j.1460-2695.1998.00021.x
26.
Lloyd
,
G. J.
, “
High Temperature Fatigue and Creep-Fatigue Crack Propagation: Mechanics, Mechanisms, and Observed Behaviour in Structural Materials
,”
Fatigue at High Temperature
,
R. P.
Skelton
, Ed.,
Applied Science Publishers
,
London
,
1983
, pp.
187
258
.
27.
Adam
,
P.
, “
Schwungradreibschweiβen von Verdichter-Rotoren aus Titan-legierungen (Inertia Welding of Compressor Rotor Drums of Titanium-Alloys)
,” DVS (Deutscher Verband fur Schweisstechnik) Berichte (Report) 139,
1991
, DVS, Düsseldorf, Germany, pp.
36
39
.
This content is only available via PDF.
You do not currently have access to this content.