Abstract

A finite element method (FEM) was employed to aid in the thermodynamic analysis of the cooling process of steel containing nonmetallic inclusions in a homogenous, isotropic, single-phase steel matrix. Three different contact techniques available in ANSYS were used in a 2-D model of Al2O3 inclusions in a 1010 steel grade to define different types of inclusion-steel interfaces. Comparisons of these numerical techniques examine the effect of the characteristic of the interface on the residual stress concentration zone around inclusions embedded in a steel matrix with an initially free stress state and their thermal interaction during the cooling process from 1300°C. Results are presented to discuss the significance of the inclusion surface and boundary conditions (axisymmetric and fully constrained) on the stress distribution within the stress concentration zone in the vicinity of the interface.

References

1.
Shtremel
,
M. A.
, “
Problems of the Metallurgical Quality of Steel (Nonmetallic Inclusion)
,”
Moscow Institute of Steel and Alloys
(translated from
Metallovedenie i Termicheskaya Obrabtka Metallov
), No.
8
,
1980
, pp.
2
6
.
2.
Muskhelishvili
,
N. I.
,
Some Basic Problems in the Mathematical Theory of Elasticity
,
Naukam
,
Moscow
,
1966
.
3.
Neuber
,
H.
, “
Stress Concentrations
,”
Gostekhizdat
,
1947
(in Russian).
4.
Savin
,
G. N.
, “
Stress Concentrations Around Holes
,”
Gostekhizdat
,
1951
(in Russian).
5.
Pavlov
,
I. M.
and
Krupin
,
A. M.
,
Scientific Reports of Universities
, No. 1,
Metallurgiya
,
Moscow
,
1958
.
6.
Pavlov
,
I. M.
and
Krupin
,
A. V.
,
Transactions of the A. A. Baikov Institute of Metallurgy
, No. 7,
Izd. AN SSSR
,
Moscow
,
1969
.
7.
Finkel
,
V. M.
,
Elesina
,
O. P.
,
Zarichenko
,
V. M.
, and
Mizahakova
,
E. A.
, “
The Effect of Non-metallic Inclusion of the Strength of Steel
,”
Met. Sci. Heat Treat.
, Vol.
13
, No.
4
, April
1971
, pp.
293
297
. https://doi.org/10.1007/BF00661339
8.
Zhang
,
L.
and
Thomas
,
B. G.
, “
Inclusions in Continuous Casting of Steel
,”
XXIV National Steelmaking Symposium
,
Morelia, Mich, Mexico
, Nov.
2003
, pp.
138
183
.
9.
Belchenko
,
G. I.
and
Gubenko
,
S. I.
, “
Deformation of Nonmetallic Inclusion During Steel Rolling
,”
Russian Metallurgy
, Vol.
4
,
1983
, pp.
66
69
.
10.
Baker
,
T. J.
and
Charles
,
J. A.
, “
Deformation of MnS Inclusions in Steel
,”
J Iron Steel Inst.
, Vol.
210
,
1972
, pp.
680
690
.
11.
Gove
,
K. B.
and
Charles
,
J. A.
, “
Further Aspects of Inclusion Deformation
,”
Metals Technol
, Vol.
1
,
1974
, pp.
425
431
.
12.
Waudby
,
P. E.
, “
Factor Controlling the Plasticity of Silicate Inclusion
,”
Steel Times
,
1972
, pp.
147
152
.
13.
Lund
,
T.
and
Lkesson
,
J.
, “
Effect of Steel Manufacturing Process on the Quality of Bearing Steel
,”
ASTM STP 987
,
I. J. C.
Hoo
, Ed.,
ASTM International
,
West Conshohocken, PA
,
1988
, pp.
308
312
.
14.
Pickering
,
F. B.
and
Robinson
,
S. W.
, “
The Plastic Deformation and Fracture of Silicate Inclusions in Steel (Chapter 8)
,”
Institution of Metallurgists
, Inclusions Monograph, Vol.
3
,
1979
, pp.
127
156
.
15.
Malkiewicz
,
T.
and
Rudnik
,
S.
, “
Deformation of Nonmetallic Inclusions During Rolling of Steel
,”
J Iron Steel Inst
, Vol.
201
,
1963
, pp.
33
38
.
16.
Sen
,
S.
,
Mukhopadhyay
,
B.
, and
Ray
,
S. K.
, “
Continuous Casting and Hot Rolling of AISI-310 Stainless
,”
Steel India
, Vol.
19
,
1996
, pp.
18
23
.
17.
Luo
,
C.
and
Ståhlberg
,
U.
, “
FEM Simulation of Void Formation Close to an Inclusion in a Uniform Matrix During Plastic Deformation
,”
Simulation of Materials Processing; Theory, Methods and Applications
, Rotterdam,
1998
, pp.
379
384
.
18.
Saimoto
,
A.
and
Nistiani
,
H.
, “
Crack Propagation Simulation in a Plate with Cracks and an Inclusion
,”
Trans. Eng. Sci.
, Vol.
19
,
1998
.
19.
Harik
,
V. M.
and
Cairncross
,
R. A.
, “
Evolution of Interfacial Voids Around a Cylindrical Inclusion
,”
J. Appl. Mech.
 0021-8936, Vol.
66
,
1999
, pp.
310
314
. https://doi.org/10.1115/1.2791050
20.
Gurland
,
J.
and
Plateau
,
J.
, “
The Mechanism of Ductile Rupture
,”
J. Trans. ASM
, Vol.
56
, p. 42.
21.
Argon
,
A. S.
,
JM
,
J.
, and
Sagoflu
,
R.
, “
Cavity Formation from Inclusions in Ductile Fracture
,”
Metall. Trans.
 0026-086X, Vol.
6A
,
1975
, p. 825.
22.
Thomson
,
R. D.
and
Hancock
,
J. W.
, “
Stress and Strain Fields Around Inclusions in a Plastically Deforming Matrix
,”
Proceedings, ICM4
,
Stockholm, Sweden
, Vol.
II
,
1983
, p. 723.
23.
Gilormini
,
P.
and
Germain
,
Y.
, “
A Finite Element Analysis of the Inclusion Problem for Power Law Viscous Materials
,”
Int. J. Solids Struct.
 0020-7683, Vol.
23
,
1987
, pp.
413
437
. https://doi.org/10.1016/0020-7683(87)90045-X
24.
Nagayama
,
N.
,
Abe
,
T.
, and
Nagaki
,
S.
, “
Plastic Deformation of Inhomogeneous Materials with Elliptic Inclusions
,”
Comput. Mech.
 0178-7675, Vol.
4
, pp.
433
441
. https://doi.org/10.1007/BF00293049
25.
Pietzyk
,
M.
,
Kusiak
,
J.
,
Kusiak
,
K.
, and
Grosman
,
F.
, “
Fields of Strain Around the Inclusion of Second Phase in a Uniform Matrix Undergoing Plastic Deformation
,”
Steel Res.
 0177-4832, Vol.
62
,
1991
, pp.
507
511
.
26.
Werlefors
,
T.
and
Ekelund
,
S.
, “
Automatic Multiparameter Characterization of Non-Metallic Inclusions—An Evaluation of the Particle Analyzing Scanning Electron Microscope (PASEM)
,”
Scand. J. Metall.
 0371-0459, Vol.
7
,
1978
, pp.
60
70
.
27.
Gladman
,
T.
,
Clean Steel 3
,
Balatonfured
,
Hungary
,
1986
, pp.
50
59
.
28.
Johansson
,
S.
,
Scand. J. Metall.
 0371-0459, Vol.
19
,
1990
, pp.
79
81
.
29.
Spizig
,
W. A.
,
Sober
,
R. J.
, and
Panseri
,
N. J.
,
Metallography
 0026-0800, Vol.
16
,
1983
, pp.
171
198
. https://doi.org/10.1016/0026-0800(83)90004-6
30.
Luo
,
C.
and
Ståhlberg
,
U.
, “
An Alternative Way for Evaluating the Deformation of MnS Inclusions in Hot Rolling of Steel
,”
Scand. J. Metall.
 0371-0459, Vol.
31
,
2002
, pp.
184
190
. https://doi.org/10.1034/j.1600-0692.2002.310304.x
31.
Becker
,
R.
,
Smelser
,
R. E.
, and
Richmond
,
O.
, “
The Effect of Void Shape on the Development of Damage and Fracture in Plane-Strain Tension
,”
J. Mech. Phys. Solids
 0022-5096, Vol.
37
, No.
1
,
1989
, pp.
111
129
. https://doi.org/10.1016/0022-5096(87)90007-X
32.
Ivanova
,
V. S.
,
Fatigue Failure of Metals
, in Russian, Moscow,
1963
.
33.
Rudnik
,
S.
, “
Discontinuities in Hot-Rollers Steel Caused by Nonmetallic Inclusions
,”
Steel Res.
 0177-4832, Vol.
204
,
1966
, pp.
374
376
.
34.
Banks
,
T. M.
and
Gladman
,
T.
, “
Sulphide Shape Control
,”
Metal Technol
, Vol.
6
,
1979
, pp.
81
94
.
35.
Gove
,
K. B.
and
Charles
,
J. A.
, “
Further Aspects of Inclusion Deformation
,”
Metals Technology
, Vol.
1
,
1974
, pp.
425
431
.
36.
Garcia
,
C. I.
,
Pytel
,
S.
, and
Deardo
,
A. J.
, “
The Effect of Noninclusions on the Hot Ductility of Continuously Cast Low-Alloy Steel
,”
ECF6 Fract. Control of Eng.
, Vol.
3
,
1986
, pp.
1811
1823
.
37.
Baker
,
T. J.
and
Charles
,
J. A.
,
Effect of Second Phase Particles on the Mechanical Properties of Steel
,
M. J.
Mau
, Ed.,
The Iron and Steel Institute
,
London
,
1971
, pp.
88
94
.
38.
Allazadeh
,
M. R.
,
Garcia
,
C. I.
,
Alderson
,
K. J.
, and
DeArdo
,
A. J.
, “
Using NDT Image Processing Analysis to Study the Soundness and Cleanliness of Accelerated Cooled Continuously Cast Steel Slabs
,”
Materials Science & Technology 2008 Conference
,
Pittsburgh, PA
.
39.
Incropera
,
F. P.
and
DeWitt
,
D. P.
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley and Sons
,
Hoboken, N.J.
,
2006
.
40.
Loyau
,
V.
,
Feuillard
,
G.
, and
Tran-Huu-Hue
,
L. P.
, “
Modeling of the Temperature Increase in Ultrasonic Transducers
,”
2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference
.
41.
Baker
,
T. J.
and
Charles
,
J. A.
, “
Type II Manganese Sulphides: Their Deformation and Effect on Steel Fracture
,”
J Iron Steel Inst
, Vol.
211
,
1973
, pp.
187
192
.
This content is only available via PDF.
You do not currently have access to this content.