Abstract

A new approach of utilizing information fusion technique is developed to predict the radiation embrittlement of reactor pressure vessel steels. The Charpy transition temperature shift data contained in the Power Reactor Embrittlement Database is used in this study. Six parameters—Cu, Ni, P, neutron fluence, irradiation time, and irradiation temperature—are used in the embrittlement prediction models. The results indicate that this new embrittlement predictor achieved reductions of about 49.5 % and 52 % in the uncertainties for plate and weld data, respectively, for pressurized water reactor and boiling water reactor data, compared with the Nuclear Regulatory Commission Regulatory Guide 1.99, Rev. 2. The implications of dose-rate effect and irradiation temperature effects for the development of radiation embrittlement models are also discussed.

References

1.
Wang
,
J. A.
, and
Rao
,
N. S.
, “
A New Technique for the Prediction of Nonlinear Material Behavior
,”
J. Nucl. Mater.
 0022-3115 https://doi.org/10.1016/S0022-3115(01)00750-4, Vol.
301
, No.
2–3
,
2002
, pp.
193
202
.
2.
Wang
,
J. A.
,
Embrittlement Data Base, Version 1
, NUREG/CR-6506 (ORNL/TM-13327), U.S. Nuclear Regulatory Commission, August
1997
.
3.
Stallmann
,
F. W.
,
Wang
,
J. A.
,
Kam
,
F. B. K.
, and
Taylor
,
B. J.
,
PR-EDB: Power Reactor Embrittlement Data Base, Version 2
, NUREG/CR-4816 (ORNL/TM-10328/R2), U.S. Nuclear Regulatory Commission,
1994
.
4.
Rao
,
N. S. V.
, “
Multiple Sensor Fusion Under Unknown Distributions
,”
J. Franklin Inst.
 0016-0032 https://doi.org/10.1016/S0016-0032(98)00022-2, Vol.
336
, No.
2
,
1999
, pp.
285
299
.
5.
Rao
,
N. S. V.
, “
Multisensor Fusion Under Unknown Distributions: Finite Sample Performance Guarantees
,” in
Multisensor Fusion
,
A. K.
Hyder
, Ed.,
Kluwer Academic Publishers
,
Dordrecht
,
2003
.
6.
Rao
,
N. S. V.
, “
On Fusers That Perform Better Than Best Sensor
,”
IEEE Trans. Pattern Anal. Mach. Intell.
 0162-8828 https://doi.org/10.1109/34.946993, Vol.
23
, No.
8
,
2001
, pp.
904
909
.
7.
Rao
,
N. S. V.
, “
Finite Sample Performance Guarantees of Fusers for Function Estimators
,”
Inf. Fusion
 1566-2535 Vol.
1
, No.
1
,
2000
, pp.
35
44
.
8.
Rao
,
N. S. V.
, “
Nearest Neighbor Projective Fuser for Function Estimation
,”
Proc. Conf. On Information Fusion
, Annapolis, MD, July
2002
, Vol.
II
, pp.
1154
1161
.
9.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
Pattern Classification
,
John Wiley and Sons
,
New York
,
2001
.
10.
Hassoun
,
M. H.
,
Fundamentals of Artificial Neural Networks
,
MIT Press
,
Boston
,
1995
.
11.
Mansur
,
L. K.
, “
Mechanisms and Kinetics of Radiation Effects in Metals and Alloys
,”
Kinetics of Nohomogeneous Processes
,
G. R.
Freeman
, Ed.,
Wiley Interscience
,
New York
,
1987
.
12.
Wang
,
J. A.
, “
Analysis of the Irradiated Data for A302B and A533B Correlation Monitor Materials
,” in
Effect of Radiation on Materials: 19th International Symposium
, ASTM STP 1366,
ASTM International
,
West Conshohocken, PA
, March
2000
, pp.
59
80
.
13.
Wang
,
J. A.
, “
Development of Embrittlement Prediction Models for Power Reactors
.” in
Effect of Radiation on Materials: 18th International Symposium
, ASTM STP 1325,
ASTM International
,
West Conshohocken, PA
, March
1999
, pp.
525
540
.
14.
Wang
,
J. A.
,
Kam
,
F. B. K.
, and
Stallmann
,
F. W.
, “
Embrittlement Data Base (EDB) and Its Applications
,”
Effects of Radiation on Material
, Vol.
17
, ASTM STP 1270,
ASTM International
,
West Conshohocken, PA
, August
1996
, pp.
500
521
.
15.
Guthrie
,
G. L.
,
Charpy Trend Curves Based on 177 PWR Data Points
, NUREG/CR-3391, U.S. Nuclear Regulatory Commission,
1983
.
16.
Odette
,
G. R.
,
Lombrozo
,
P. M.
,
Perrin
,
J. F.
, and
Wullaert
,
R. A.
,
Physically Based Regression Correlations of Embrittlement Data From Reactor Pressure Vessel Surveillance Programs
, EPRI NP-3319, Electric Power Research Institute,
1984
.
17.
Fisher
,
S. B.
, and
Buswell
,
J. T.
,
A Model for PWR Pressure Vessel Embrittlement
, Berkeley Nuclear Laboratories, Central Electric Generating Board, GL139PB,
1986
.
18.
Lowe
,
A. L.
 Jr.
, and
Pegram
,
J. W.
,
Correlations for Predicting the Effects of Neutron Radiation on Linde 80 Submerged-Arc Welds
, BAW-1803, Rev. 1, May
1991
.
19.
Brillaud
,
C.
,
Hedin
,
F.
, and
Houssin
,
B.
, “
A Comparison Between French Surveillance Program Results and Predictions of Irradiation Embrittlement
,”
Influence of Radiation on Material Properties
, ASTM STP 956,
ASTM International
,
West Conshohocken, PA
,
1987
, pp.
420
447
.
20.
Randall
,
P. N.
, “
Basis for Revision 2 of the U.S. Nuclear Regulatory Commission’s Regulatory Guide 199
,”
Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review (Second Volume)
, ASTM STP 909,
ASTM International
,
West Conshohocken, PA
,
1986
, pp.
149
162
.
21.
Eason
,
E. D.
,
Wright
,
J. E.
, and
Odette
,
G. R.
,
Improved Embrittlement Correlations for Reactor Pressure Vessel Steels
, NUREG/CR-6551, U.S. Nuclear Regulatory Commission,
2000
.
22.
Stoller
,
R. E.
, and
Greenwood
,
L. R.
, “
An Evaluation of Neutron Energy Spectrum Effects in Iron Based on Molecular Dynamics Displacement Cascade Simulations
,”
ASTM 1366
,
ASTM International
,
West Conshohocken, PA
,
2000
, pp.
548
559
.
23.
Stoller
,
R. E.
, and
Odette
,
G. R.
, “
Recommendations on Damage Exposure Units for Ferritic Steel Embrittlement Correlations
,”
J. Nucl. Mater.
 0022-3115 https://doi.org/10.1016/0022-3115(92)90335-I, Vol.
186
,
1992
, pp
203
205
.
24.
Remec
,
I.
,
Wang
,
J. A.
,
Kam
,
F. B. K.
, and
Farrell
,
K.
, “
Effects of Gamma-Induced Displacements on HFIR Pressure Vessel Materials
,”
J. Nucl. Mater.
 0022-3115 https://doi.org/10.1016/0022-3115(94)90375-1, Vol.
217
, No.
3
,
1994
, pp.
258
268
.
25.
Wang
,
J. A.
, “
ARN-Atucha-I Reactor Pressure-Vessel Embrittlement
,” ORNL/TM-2004/44, Oak Ridge National laboratory, Oak Ridge, Tenn., March
2004
.
This content is only available via PDF.
You do not currently have access to this content.