Abstract

Ultra-high performance concrete exhibits sufficient tensile strength and tensile toughness that structurally efficient use of these concretes demands that the tensile capabilities be utilized. A means of determining the tensile properties of UHPC is essential to the expanded use of this advanced construction material. However, no simple, practical test currently exists to determine or verify these properties in a production environment. The ASTM C 496 splitting tensile test method presents a starting point for the development of a practical test procedure, as this test method both is comparatively easy to perform and is well regarded in terms of its ability to create a uniform tensile stress field within a concrete sample. This paper presents an adaptation of this test method that allows for quantitative determination of the tensile cracking strength of UHPC and for qualitative verification of the post-cracking tensile behaviors.

References

1.
ASTM Standard C 496-90, “
Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
1990
.
2.
Carneiro
,
F. L. L. B.
, and
Barcellos
,
A.
, “
Tensile Strength of Concretes
,”
RILEM Bulletin
, No.
13
,
1953
, pp.
97
-
123
.
3.
Akazawa
,
T.
, “
Tension Test Method for Concretes
,”
RILEM Bulletin
, No.
16
,
1953
, pp.
13
-
23
.
4.
Association Française de Génie Civil, Interim Recommendations for Ultra High Performance Fibre-Reinforced Concretes,
2002
.
5.
Graybeal
,
B.
, “
Characterization of the Behavior of Ultra-High Performance Concrete
,” Ph.D. Dissertation,
University of Maryland
,
05
2005
, 360 pp.
6.
ASTM Standard C 1018-97, “
Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading)
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
1997
.
7.
AASHTO Standard T132-00, “
Standard Method of Test for Tensile Strength of Hydraulic Cement Mortars
,”
AASHTO Standard Specifications for Transportation Materials and Methods of Sampling and Testing
,
AASHTO
,
Washington, DC
,
2000
.
8.
USBR Standard 4914-92, “
Procedure for Direct Tensile Strength, Static Modulus of Elasticity, and Poisson's Ratio of Cylindrical Concrete Specimens in Tension
,”
Concrete Manual
,
United States Department of Interior, Bureau of Reclamation
,
Denver, CO
,
1992
.
9.
ASTM Standard C 78-94, “
Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
,
1994
.
10.
Boulay
,
C.
and
Colson
,
A.
, “
A Concrete Extensometer Eliminating the Influence of Transverse Strains on the Measurements of Longitudinal Strains
,”
Mater. Constr. (Paris)
 0025-5432, Vol.
14
, No.
79
,
1981
, pp.
35
-
38
(in French).
11.
Boulay
,
C.
,
Rossi
,
P.
, and
Tailhan
,
J.-L.
, “
Uniaxial Tensile Test on a New Cement Composite Having a Hardening Behaviour
,”
Fiber Reinforced Concretes—BEFIB 2004, Proceedings of the 6th International RILEM Symposium
,
M.
di Prisco
,
R.
Felicetti
, and
G. A.
Plizzari
, Eds.
2004
, pp.
61
-
68
.
12.
Li
,
V.
, “
Engineered Cementitious Composites (ECC)—Tailored Composites Through Micromechanical Modeling
,”
Fiber Reinforced Concrete: Present and Future
,
N.
Banthia
, Ed.,
Canadian Society of Civil Engineers
,
Montreal
,
1997
, 213 pp.
13.
Li
,
V. C.
,
Wu
,
H.-C.
,
Maalej
,
M.
, and
Mishra
,
D. K.
, “
Tensile Behavior of Cement-Based Composites with Random Discontinuous Steel Fibers
,”
J. Am. Ceram. Soc.
 0002-7820 https://doi.org/10.1111/j.1151-2916.1996.tb07882.x, Vol.
79
, No.
1
,
1996
, pp.
74
-
78
.
14.
Li
,
Z.
,
Kulkarni
,
S. M.
, and
Shah
,
S. P.
, “
New Test Method for Obtaining Softening Response of Unnotched Concrete Specimen Under Uniaxial Tension
,”
Exp. Mech.
 0014-4851, Vol.
33
,
1993
, pp.
181
-
188
.
15.
Li
,
Z.
,
Li
,
F.
,
Chang
,
T. P.
, and
Mai
,
Y.
, “
Uniaxial Tensile Behavior of Concrete Reinforced with Randomly Distributed Short Fibers
,”
ACI Mater. J.
 0889-325X, Vol.
95
, No.
5
,
1998
, pp.
564
-
574
.
16.
Lim
,
T.
,
Paramasivam
,
P.
, and
Lee
,
S.
, “
Analytical Model for Tensile Behavior of Steel Fiber Concrete
,”
ACI Mater. J.
 0889-325X, Vol.
84
, No.
4
,
1987
, pp.
286
-
298
.
17.
Morris
,
A. D.
and
Garrett
,
G. G.
, “
A Comparative Study of the Static and Fatigue Behavior of Plain and Steel Fibre Reinforced Mortar in Compression and Direct Tension
,”
Int. J. Cement Composites and Lightweight Concrete
, Vol.
3
, No.
2
,
1981
, pp.
73
-
91
.
18.
Phillips
,
D. C.
and
Zhang
,
B. S.
, “
Direct Tension Test on Notched and Unnotched Plain Concrete Specimens
,”
Mag. Concrete Res.
 0024-9831, Vol.
45
, No.
162
,
1993
, pp.
25
-
35
.
19.
RILEM
, TC 162-TDF, “
Test and Design Methods for Steel Fibre Reinforced Concrete—Recommendations: Uni-axial Tension Test for Steel Fibre Reinforced Concrete
,”
Mater. Struct.
, Vol.
34
,
2001
, pp.
3
-
6
.
20.
Rossi
,
P.
, “
High Performance Multimodal Fiber Reinforced Cement Composites (HPMFRCC): The LCPC Experience
,”
ACI Mater. J.
 0889-325X, Vol.
94
, No.
6
,
1997
, pp.
478
-
483
.
21.
Saito
,
M.
and
Imai
,
S.
, “
Direct Tensile Fatigue of Concrete by the Use of Friction Grips
,”
ACI J.
 0002-8061, Vol.
80
, No.
5
,
1983
, pp.
431
-
438
.
22.
Wang
,
Y.
,
Li
,
V. C.
, and
Backer
,
S.
, “
Experimental Determination of Tensile Behavior of Fiber Reinforced Concrete
,”
ACI Mater. J.
 0889-325X, Vol.
87
, No.
5
,
1990
, pp.
461
-
468
.
23.
Zhang
,
J.
,
Stang
,
H.
, and
Li
,
V.
, “
Experimental Study on Crack Bridging in FRC Under Uniaxial Fatigue Tension
,”
J. Mater. Civ. Eng.
 0899-1561 https://doi.org/10.1061/(ASCE)0899-1561(2000)12:1(66), Vol.
12
, No.
1
,
2000
, pp.
66
-
73
.
24.
Zheng
,
W.
,
Kwan
,
A. K. H.
, and
Lee
,
P. K. K.
, “
Direct Tension Test of Concrete
,”
ACI Mater. J.
 0889-325X, Vol.
98
, No.
1
,
2001
, pp.
63
-
71
.
25.
Chanvillard
,
G.
and
Rigaud
,
S.
, “
Complete Characterization of Tensile Properties of Ductal® UHPFRC According to the French Recommendations
,”
Proceedings of the 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC4)
,
Ann Arbor, MI
, 15–18 June 2003, 14 pp.
26.
Timoshenko
,
S. P.
and
Goodier
,
J. N.
,
Theory of Elasticity
, 2nd ed.,
McGraw-Hill
,
NY
,
1951
, 506 pp.
27.
Petroski
,
H. J.
and
Ojdrovic
,
R. P.
, “
The Concrete Cylinder: Stress Analysis and Failure Modes
,”
Int. J. Fract.
 0376-9429, Vol.
34
,
1987
, pp.
263
-
279
.
28.
Nanni
,
A.
, “
Splitting-Tension Test for Fiber Reinforced Concrete
,”
ACI Mater. J.
 0889-325X, Vol.
85
, No.
4
,
1988
, pp.
229
-
233
.
29.
Washer
,
G.
,
Fuchs
,
P.
,
Graybeal
,
B.
, and
Hartmann
,
J.
, “
Ultrasonic Testing of Reactive Powder Concrete
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
 0885-3010, Vol.
51
, No.
2
,
2004
, pp.
193
-
201
.
This content is only available via PDF.
You do not currently have access to this content.