Abstract

The ASTM standard for fatigue crack growth, E 647, was co-developed by industry and government in the late 1970s to define a standard procedure for generating material crack growth behavior under a variety of loading conditions. The standard specifies tolerances on laboratory procedures, specimen configurations to generate material characterization information of a high integrity. Recent research developing fatigue crack growth rate data has uncovered significant issues with the standard test method and specimen configurations. The data generated has been largely dependent on specimen configuration, i.e., M(T) and C(T) specimens produce very different crack growth rate curves; C(T) specimens of different sizes do not generate the same material response; and finally, the development of steady-state, as defined using constant ΔK testing, does not agree with the data generated with the standard ASTM test method. Therefore, in this paper the authors present data that does not lend confidence in the integrity of the standard C(T) specimen tested using the ASTM standard method and investigate causes for the observed anomalous crack growth rate behavior.

References

1.
Hudak
,
S. J.
, Jr.
,
Saxena
,
S. J.
,
Bucci
,
A.
, and
Malcolm
,
R. C.
, “
Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data—Final Report
,” AFML TR 78-40,
Air Force Materials Laboratory
,
Wright Patterson Air Force Base, OH
,
1978
.
2.
Lincoln
,
J. W.
, “
Damage-Tolerance—USAF Experience
,”
Proc. 13th Symposium of the Int. Comm. On Aeronautical Fatigue
,
Pisa, Italy
,
1985
.
3.
Bucci
,
R. J.
, “
Development of a Proposed ASTM Standard Test Method for Near-Threshold Fatigue Crack Growth Rate Measurement
,”
Fatigue Crack Growth Measurement and Data Analysis
, ASTM STP 738,
ASTM International
,
West Conshohocken, PA
,
1981
, pp.
5
-
28
.
4.
Forth
,
S. C.
,
Newman
,
J. C.
, Jr.
, and
Forman
,
R. G.
, “
Evaluation of Fatigue Crack Thresholds Using Various Experimental Methods
,”
J. ASTM Int.
 1546-962X, Vol.
2
, No.
6
,
2005
, pp.
1
-
16
.
5.
Forman
,
R. G.
, “
Development of Improved Fatigue Crack Growth Test Methods and Analytic Models Applicable to Aircraft Propellers
,”
Proc. of FAA NRTC Review
,
2005
.
6.
Garr
,
K. R.
and
Hresko
,
G. C.
, “
A Size Effect on the Fatigue Crack Growth Rate Threshold of Alloy 718
,”
Fatigue Crack Growth Thresholds, Endurance Limits, and Design
,
ASTM International
,
West Conshohocken, PA
,
2000
, pp.
155
-
174
.
7.
Forth
,
S. C.
,
James
,
M. A.
, and
Johnston
,
W. M.
, “
Fatigue Crack Growth Thresholds in D6AC Steel
,”
Proc. of the 15th European Conf. on Fracture
, ECF15,
2004
.
8.
Damage Tolerance and Fatigue Evaluation of Structure
,”
Federal Aviation Regulations
, Title 14 Code of Federal Regulations, Part 25, Section 571.
9.
Kanninen
,
M. F.
and
Popelar
,
C. H.
,
Advanced Fracture Mechanics
,
Oxford Engineering Science Series
,
1985
.
10.
NASGRO Material Database
. ver. 4.2 www.nasgro.swri.org,
2005
.
11.
Forth
,
S. C.
,
Newman
,
J. C.
, Jr.
, and
Forman
,
R. G.
, “
On Generating Fatigue Crack Growth Thresholds
,”
Int. Journal of Fatigue
, Vol.
25
,
2003
, pp.
9
-
15
.
12.
Elber
,
W.
, “
The Significance of Fatigue Crack Closure
,”
Damage Tolerance in Aircraft Structures
, ASTM STP 486,
ASTM International
,
West Conshohocken, PA
,
1971
, pp.
230
-
242
.
13.
Liaw
,
P. K.
,
Peck
,
M. G.
, and
Rudd
,
G. E.
, “
Fatigue Crack Growth Behavior of D6AC Pace Shuttle Steel
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
43
,
1992
, pp.
370
-
400
.
14.
Fracture Technology Associates, www.fracturetech.com.
15.
Dougherty
,
J. D.
,
Srivatsan
,
T. S.
, and
Padovan
,
J.
, “
Fatigue Crack Propagation and Closure Behavior of Modified 1070 Steel: Experimental Results
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
56
,
1997
, pp.
167
-
187
.
16.
Ritchie
,
R. O.
and
Suresh
,
S.
,
Metall. Trans. A
 0360-2133, Vol.
13A
,
1982
, pp.
937
-
940
.
17.
McEvily
,
A. J.
,
Mechanics of Fatigue Crack Closure
, ASTM STP 982,
ASTM International
,
West Conshohocken, PA
,
1988
, pp.
35
-
43
.
18.
Davidson
,
D.
and
Lankford
,
J.
, “
The Effects of Aluminum Alloy Microstructure on Fatigue Crack Growth
,”
Metallurgical Science and Engineering
, Vol.
74
,
1984
, pp.
189
-
199
.
19.
da Fonte
,
M.
,
Romeiro
,
F.
,
de Freitas
,
M.
,
Stanzl-Tschegg
,
S. E.
,
Tschegg
,
E. K.
, and
Vasudevan
,
A. K.
, “
The Effect of Microstructure and Environment on Fatigue Crack Growth in 7049 Aluminum Alloy at Negative Stress Ratios
,”
International Journal of Fatigue
 0142-1123, Vol.
25
,
2003
, pp.
1209
-
1216
.
20.
Sadananda
,
K.
and
Vasudevan
,
A. K.
, “
Fatigue Crack Growth Mechanisms in Steels
,”
Int. Journal of Fatigue
, Vol.
25
,
2003
, pp.
899
-
914
.
21.
Gangloff
,
R. P.
,
Environmentally-Induced Cracking of Metals
, NACE-10,
1988
, pp.
55
-
110
.
22.
Newman
,
J. C.
, Jr.
, “
A Nonlinear Fracture Mechanics Approach to the Growth of Small Cracks
,” AGARD Specialists'
Meeting on Behavior of Short Cracks in Airframe Components
, AGARD CP-328,
1983
, pp. 6.1-6.26.
This content is only available via PDF.
You do not currently have access to this content.