Abstract

The objective of this research was to investigate the high cycle fatigue behavior of a titanium alloy using an ultrasonic fatigue system. Fatigue testing up to one billion cycles under fully reversed loading conditions was performed to determine the ultra-high cycle fatigue behavior of Ti-6Al-4V. Endurance limit results were compared to similar data generated on conventional servohydraulic test systems and electromagnetic shaker systems to determine if there are any frequency effects. In addition, specimens were tested with and without cooling air to determine the effects of temperature on the fatigue behavior. Results indicate that the fatigue strength determined from ultrasonic testing was consistent with conventional testing. However, preliminary results indicate that cooling air may increase the fatigue limit stress at very long lives.

References

1.
Marines
,
I.
,
Dominguez
,
G.
,
Baudry
,
G.
,
Vittori
,
J.-F.
,
Rathery
,
S.
,
Doucet
,
J.-P.
, et al
, “
Ultrasonic Fatigue Tests on Bearing Steel AISI-SAE 52100 at Frequency of 20 and 30 kHz
,”
International Journal of Fatigue
 0142-1123 https://doi.org/10.1016/S0142-1123(03)00161-0, Vol.
25
,
2003
, pp.
1037
-
1046
.
2.
Papakyriacou
,
M.
,
Mayer
,
H.
,
Pypen
,
C.
,
Plenk
,
H.
, and
Stanzl-Tschegg
,
S.
, “
Influence of Loading Frequency on High Cycle Fatigue Properties of B.C.C. and H.C.P. Metals
,”
Materials Science and Engineering A
, Vol.
308
,
2001
,
143
-
152
.
3.
Stanzl-Tschegg
,
S. E.
and
Mayer
,
H.
, “
Fatigue and Fatigue Crack Growth of Aluminum Alloys at Very High Numbers of Cycles
,”
International Journal of Fatigue
 0142-1123, Vol.
23
,
2001
, pp.
S231
-
S237
.
4.
ENSIP
,
Engine Structural Integrity Program Handbook
, http://engineering.wpafb.af.mil/corpusa/handbook/mh1783/mh1783.pdf, rev.
2002
.
5.
Meyer
,
H.
, “
Fatigue Crack Growth and Threshold Measurements at Very High Frequencies
,”
International Materials Reviews
 0950-6608, Vol.
44
, No.
1
,
1999
.
6.
Stanzl-Tschegg
,
S. E.
, “
Ultrasonic Fatigue
,”
Fatigue 96
,
1996
, pp.
1887
-
1898
.
7.
Gallagher
,
J. P.
, et al
, “
Improved High Cycle Fatigue Life Prediction
,” Report # AFRL-ML-WP-TR-2001-4159,
University of Dayton Research Institute
, Dayton, OH,
01
2001
(on CD-ROM).
8.
Moshier
,
M. A.
,
Nicholas
,
T.
, and
Hillberry
,
B. M.
, “
High Cycle Fatigue Threshold in the Presence of Naturally Initiated Small Surface Cracks
,”
Fatigue and Fracture Mechanics: 33rd Volume
, ASTM STP 1417,
W. G.
Reuter
and
R. S.
Piascik
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2002
, pp.
129
-
146
.
9.
Mall
,
S.
,
Nicholas
,
T.
, and
Park
,
T.-W.
, “
Effect of Pre-Damage from Low Cycle Fatigue on High Cycle Fatigue Strength of Ti-6Al-4V
,”
International Journal of Fatigue
 0142-1123, Vol.
25
,
2003
, pp.
1109
-
1116
.
10.
Atrens
,
A.
,
Hoffelner
,
W.
,
Duerig
,
T. W.
, and
Allison
,
J. E.
, “
Subsurface Crack Initiation in High Cycle Fatigue in Ti-6Al-4V and in a Typical Martensitic Stainless Steel
,”
Scripta Metallurgica
, Vol.
17
, No.
5
,
1983
, pp.
601
-
606
.
11.
Wang
,
Q. Y.
,
Bathias
,
C.
,
Kawagoishi
,
N.
, and
Chen
,
Q.
, “
Effect of Inclusion on Subsurface Crack Initiation and Gigacycle Fatigue Strength
,”
International Journal of Fatigue
 0142-1123, Vol.
24
,
2002
, pp.
1269
-
1274
.
This content is only available via PDF.
You do not currently have access to this content.