Abstract

In this paper, a damage constitutive model based on a micro-mechanical approach is established and used to predict the macro-microscopic elastic-brittle mechanical behavior of continuous fiber reinforced ceramic matrix composites (CFCC). Anisotropic damage is applied to describe the matrix phase damage which reflects all types of damage such as nucleation and coalescence of voids and micro-cracks that the matrix material undergoes. The asymptotic expansion homogenization method is used to obtain the effective mechanical properties of composites and to derive the homogenized damage elastic concentration factor and the gross stiffness matrix of unidirectional and cross-ply laminate composite materials. Internal variables are introduced to describe the evolution of the damage state and the degradation of the material stiffness. Using the proposed theory, the unidirectional composite and the cross-ply laminate composites with /03/90/03/, /03/902/03/, and /03/903/03/ stacking sequences are analyzed, and the numerical results are consistent with those of the experiments.

References

1.
Vanswijgenhoven
,
E.
and
Van Der Biest
,
O.
, “
The Relationship Between Longitudinal Stress and Transverse Strain During Tensile Testing of Unidirectional Fiber Toughened Ceramic Matrix Composites
,”
Acta. Mater.
,
1997
, Vol.
45
, No.
8
, pp.
3349
-
3362
.
2.
Baste
,
S.
, “
Inelastic Behavior of Ceramic-Matrix Composites
,”
Composites Science and Technology
 0266-3538,
2001
, Vol.
61
, pp.
2285
-
2297
.
3.
Guillaumat
,
L.
and
Lamon
,
J.
, “
Fracture Statistics Applied to Modeling the Non-Linear Stress-Strain Behavior in Microcomposites
,”
International Journal of Fracture
,
1996
, Vol.
82
, pp.
297
-
316
.
4.
Lissart
,
N.
and
Lamon
,
J.
, “
Damage and Failure in Ceramic Matrix Mini-Composites: Experimental Study and Model
,”
Acta Mater.
 1359-6454,
1997
, Vol.
45
, pp.
1025
-
1044
.
5.
Curtin
,
W. A.
, “
Theory of Mechanical Properties of Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
 0002-7820 https://doi.org/10.1111/j.1151-2916.1991.tb06852.x,
1991
, Vol.
74
, pp.
2837
-
2845
.
6.
Pellegrino
,
C.
,
Galvanetto
,
U.
,
Schrefler
,
B. A.
, “
Numerical Homogenization of Periodic Composite Materials with Non-Linear Material Components
,”
International Journal for Numerical Methods in Engineering
 0029-5981,
1999
, Vol.
46
, pp.
1609
-
1637
.
7.
Guedes
,
J. M.
and
Kikuchi
,
N.
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive Finite Element Methods
,”
Computer Methods in Applied Mechanics and Engineering
 0045-7825 https://doi.org/10.1016/0045-7825(90)90148-F,
1990
, Vol.
83
, pp.
143
-
198
.
8.
Farzad
,
R. A.
,
Chen
,
C. M.
, and
Kikuchi
N.
, “
Design Analysis of Composite Laminate Structures for Light-Weight Armored Vehicle by Homogenization Method
,”
Computers & Structures
,
2000
, Vol.
76
, pp.
319
-
335
.
9.
Dvorak
,
G. J.
,
Bahei-El-Din
,
Y. A.
,
Wafa
,
A. W.
, “
Implementation of the Transformation Field Analysis for Inelastic Composite Materials
,”
Computational Mechanics
 0178-7675 https://doi.org/10.1007/BF00370073,
1994
, Vol.
14
, pp.
201
-
228
.
10.
Voyiadjis
,
G. Z.
and
Kattan
,
P. I.
, “
A Plasticity-Damage Theory for Large Deformation of Solids. Part I: Theoretical Formulation
,”
International Journal of Engineering Science
,
1992
, Vol.
30
, pp.
1089
-
1108
.
11.
Voyiadjis
,
G. Z.
and
Kattan
,
P. I.
, “
Damage of Fiber-Reinforced Composite Materials with Micro-Mechanical Characterization
,”
Int. J. Solids Structures
,
1993
, Vol.
30
, pp.
2757
-
2778
.
12.
Murakami
,
S.
and
Kamiya
,
K.
, “
Constitutive and Damage Evolution Equations of Elastic-Brittle Materials Based on Irreversible Thermodynamics
,”
International Journal of Mechanical Science
,
1997
, Vol.
39
, No.
4
, pp.
473
-
486
.
13.
Chow
,
C. L.
and
Wang
,
J.
, “
An Anisotropic Theory of Continuum Damage Mechanics for Ductile Fracture
,”
Engineering Fracture Mechanics
 0013-7944 https://doi.org/10.1016/0013-7944(87)90108-1,
1987
, Vol.
27
, pp.
547
-
558
.
14.
Zhu
,
Y. Y.
and
Cescotto
,
S.
, “
A Fully Coupled Elasto-Visco-Plastic Damage Theory for Anisotropic Materials
,”
International Journal of Solids and Structures
 0020-7683,
1995
, Vol.
32
, pp.
1607
-
1641
.
15.
Fish
,
J.
,
Nayak
,
P.
, and
Holmes
,
M. H.
, “
Microcsale Reduction Error Indicators and Estimators for a Periodic Heterogeneous Medium
,”
Computational Mechanics
 0178-7675,
1994
, Vol.
14
, pp.
323
-
338
.
16.
Fish
,
J.
,
Yu
,
Q.
, and
Shek
,
K.
, “
Computational Damage Mechanics for Composite Materials Based on Mathematical Homogenization
,”
International Journal of Numerical Methods in Engineering
 0029-5981,
1999
, Vol.
45
, pp.
1657
-
1679
.
17.
ANSYS
,
User's Manual
,
1992
,
Houston
,
Swanson Analysis Systems, Inc.
18.
Wang
,
S. W.
,
Parvizi-Majidi
,
A.
, “
Experimental Characterization of the Tensile Behavior of Nicalon Fibre-Reinforced Calcium Aluminosilicate Composites
,”
Journal of Materials Science
 0022-2461,
1992
, Vol.
27
, pp.
5483
-
5496
.
19.
Garrett
,
K. W.
and
Bailey
,
J. E.
,
ibid
,
1977
, Vol.
12
, p. 157.
20.
Luo
,
D. M.
and
Takezono
,
S.
, “
A Micro/Macro Mechanical Approach for Over Anisotropic Damage Analysis in CFCC by Finite Element Method
,”
International Journal of Damage Mechanics
,
2003
, Vol.
12
, No.
2
, pp.
141
-
162
.
21.
Nardone
,
V. C.
and
Prewo
,
K. M.
, “
Tensile Performance of Carbon-Fiber-Reinforced Glass
,”
Journal of Materials Science
 0022-2461,
1988
, Vol.
23
, pp.
168
-
180
.
This content is only available via PDF.
You do not currently have access to this content.