Abstract

The proper consideration of variable amplitude loading by utilizing service spectra and appropriate Gassner-lines is essential for the design of light-weight components and structures by allowing loads in significant excess of the Woehler-line (S-N curve). This permits higher stresses than under constant amplitude loading and renders reduced component dimensions. Reliable reconstitution and simulation methods for service load-time histories require not only the rainflow matrices, but also information about the order of the cycles described by Markovian matrices, the power spectral density and, for multiaxial applications, the cross-correlations between the particular load directions as well as the phase relations. A major problem in numerical fatigue life assessment is still the fatigue life calculations for spectrum loading, because of the scattering of the real damage sum D over a wide range, which is not entirely understood. These findings demonstrate the need for experimental spectrum tests, which are indispensable for ensuring the safety of parts. With regard to safety and liability requirements, the failure probability resulting from the probability of occurrence of the spectrum, from the scattering of the fatigue strength and from the failure criterion (technical crack or propagation), must be taken into account.

References

1.
Gassner
,
E.
, “
Festigkeitsversuche mit wiederholter Beanspruchung im Flugzeugbau
,”
Luftwissen
,
1939
, No.
6
, pp.
61
-
64
.
2.
Heuler
,
P.
and
Schütz
,
W.
, “
Standardized Load-Time Histories — Status and Trends
,” In:
Proc. Of the 4th Int. Conf. on Low-Cycle Fatigue and Elasto-Plastic Behaviour of Materials
,
Garmisch-Partenkirchen
,
Germany
1998
, pp.
729
-
734
.
3.
Berger
,
C.
,
Eulitz
,
K.-G.
,
Heuler
,
P.
,
Kotte
,
K.-L.
,
Naundorf
,
H.
,
Schütz
,
W.
, et al
, “
Betriebsfestigkeit in Germany — An Overview
,”
International Journal of Fatigue
 0142-1123, Vol.
24
, No.
6
,
2002
, pp.
603
-
625
.
4.
Buxbaum
,
O.
, “
Betriebsfestigkeit — Sichere und wirtschaftliche Bemessung schwingbruchgefährdeter Bauteile
,”
Verlag Stahleisen
,
Düsseldorf
,
1992
.
5.
Haibach
,
E.
, “
Betriebsfestigkeit — Verfahren und Daten zur Berechnung
,”
VDI-Verlag
, Düsseldorf,
1989
.
6.
Schijve
,
J.
, “
Fatigue of Structures and Materials
,”
Kluwer Academic Publishers
,
AH Dordrecht
,
2001
.
7.
Grubisic
,
V.
and
Sonsino
,
C. M.
, “
Influence of Local Strain Distribution on Low-Cycle Fatigue Behaviour of Thick Walled Structures
,”
Low-Cycle Fatigue and Life Prediction
, ASTM STP 770,
C.
Amzallag
,
B. N.
Leis
, and
P.
Rabbe
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1982
, pp.
612
-
629
.
8.
Sonsino
,
C. M.
, “
Limitations in the Use of RMS-Values and Equivalent Stresses in Variable Amplitude Loading
,”
Int. Journal of Fatigue
, Vol.
11
, No.
3
,
1989
, pp.
142
-
152
.
9.
Grubisic
,
V.
, “
Criteria and Methodology for Lightweight Design of Vehicle Components
,”
Fraunhofer-Institute for Structural Durability LBF
, Darmstadt, Germany, Report No. TB-176,
1986
.
10.
de Jonge
,
J. B.
, “
Counting Methods for the Analysis of Load Time Histories
,”
NLR Memorandum
,
SB-80-106 U
,
1980
.
11.
Endo
,
T.
, et al
, “
Damage Evaluation of Metals for Random or Varying Loading. Three Aspects of Rain-Flow Method
,” In:
Proc. of the 1974 Symp. on Mech. Behavior of Materials
,
Soc. of. Mat. Science Japan
,
1974
, pp.
372
-
380
.
12.
Smith
,
K. N.
,
Watson
,
P.
,
Topper
,
T. H.
, “
A Stress-Strain Function for the Fatigue of Metals
,”
Journal of Materials
 0022-2453, Vol.
5
, No.
4
,
1970
, pp.
767
-
778
.
13.
Buxbaum
,
O.
,
Klätschke
,
H.
,
Oppermann
,
H.
, “
Effect of Loading Sequence on the Fatigue Life of Notched Specimens Made from Steel and Aluminium Alloys
,”
Applied Mechanics Reviews
 0003-6900, Vol.
44
, No.
1
,
1991
, pp.
27
-
35
.
14.
Perret
,
B. H. E.
, “
An Evaluation of a Method of Reconstituting Fatigue Loading from Rainflow Counting
,” In:
New Materials and Fatigue Resistant Aircraft Design
, Proc. of the 14th ICAF-Symposium,
D. L.
Simpson
, Ed.,
Engineering Materials Advisory Services (EMAS)
,
Warley
,
1987
, pp.
355
-
401
.
15.
Lowak
,
H.
and
Grubisic
,
V.
, “
Möglichkeiten zur Lebensdauervorhersage für Bauteile aus Aluminiumlegierungen
,”
Materialprüfung
, Vol.
27
, No.
11
,
1985
, pp.
337
-
343
.
16.
Schütz
,
D.
,
Klätschke
,
H.
,
Steinhilber
,
H.
,
Heuler
,
P.
, and
Schütz
,
W.
, “
Standardized Load Sequences for Car Wheel Suspension Components (Car Loading Standard)
,”
Fraunhofer-Institute for Structural Durability LBF
, Darmstadt/Germany, Report No. FB-191/IABG-Report No. TF-2695,
1990
.
17.
Dowling
,
N. E.
, “
A Review of Fatigue Life Prediction Methods
,” SAE Paper No. 871966,
SAE Passenger Car Meeting and Exposition
,
Dearborn, MI
, October 19–22, 1987.
18.
Chaboche
,
J. L.
and
Lesne
,
P. M.
, “
A Non-Linear Continuous Fatigue Damage Model
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
11
, No.
1
,
1988
, pp.
1
-
7
.
19.
Fatemi
,
A.
and
Yang
,
L.
, “
Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
 0142-1123 https://doi.org/10.1016/S0142-1123(97)00081-9, Vol.
20
, No.
1
,
1998
, pp.
9
-
34
.
20.
Eulitz
,
K.-G.
and
Kotte
,
K. L.
, “
Damage Accumulation-Limitations and Perspectives for Fatigue Life Assessment
,”
Materials Week 2000 — Proceedings
,
Werkstoffwoche-Partnerschaft, Ed. and Organizer
,
Frankfurt
, 25–28 September 2000, (www.materialsweek.org/proceedings).
21.
Grubisic
,
V.
and
Rupp
,
A.
, “
Gegenüberstellung der experimentell und rechnerisch bestimmten Lebensdauer von Bauteilen und Probestäben
,” In:
“Bauteilleben-sdauer: Rechnung und Versuch” 19. Vortragsveranstaltung der DVM-Arbeits-kreises Betriebsfestigkeit
,
München, Hrsg. Dt. Verband für Materialforschung und -prüfung
,
Berlin
,
1993
, pp.
271
-
291
.
22.
Sonsino
,
C. M.
,
Kaufmann
,
H.
, and
Grubisic
,
V.
, “
Transferability of Material Data for the Example of a Randomly Forged Truck Stub Axle
,”
SAE Transactions Section 5. Journal of Materials and Manufacturing 106
,
1997
, pp.
649
-
670
.
23.
Vormwald
,
M.
, “
Anrißlebensdauervorhersage auf der Basis der Schwingbruch-mechanik für kurze Risse (Crack Initiation Life Prediction on the Basis of Fracture Mechanics for Short Cracks)
,”
Veröffentlichung des Instituts für Stahlbau und Werkstoffmechanik der Technischen Hochschule Darmstadt
, Heft
47
,
1989
.
24.
Sonsino
,
C. M.
and
Grubisic
,
V.
, “
Requirements for Operational Fatigue Strength of High Quality Cast Components
,”
Materialwissenschaft und Werkstofftechnik
 0933-5137, Vol.
27
, No.
8
,
1996
, pp.
373
-
390
.
25.
Grubisic
,
V.
and
Fischer
,
G.
, “
Methodology for Effective Design Evaluation and Durability Approval of Car Suspension Components
,” SAE Paper 970094,
1997
.
26.
Grubisic
,
V.
, “
Design Procedures and Liability Requirements
,” In:
Proceedings of XXIX Convegno Nazionale dell'Associazione Italiana per l'Analisi delle Sollecitazioni
,
Lucca/Italy
,
07
09
2000
.
27.
Sonsino
,
C. M.
,
Kaufmann
,
H.
,
Foth
,
J.
, and
Jauch
,
F.
, “
Fatigue Strength of Driving Shafts of Automatic Transmission Gearboxes Under Operational Torques
,”
SAE Transactions Section 5, Journal of Materials and Manufacturing
106
,
1997
, pp.
635
-
648
.
28.
Sonsino
,
C. M.
and
Bacher-Höchst
,
M.
, “
Methodology for the Safe and Economical Fatigue Design of Components in ABS/ETC Braking Systems under Variable Amplitude Loading
,”
SAE International Congress and Exhibition
,
Detroit, MI
, March 1–4, 1999, SAE Paper No. 990366.
29.
Hanselka
,
H.
and
Sachau
,
D.
, “
German Industrial Research Project ADAPTRONIK: Content, Results and Outlook
,”
Society of Photo-Optical Instrumentation Engineers
,
Bellingham, WA
,
2001
, pp.
29
-
36
.
This content is only available via PDF.
You do not currently have access to this content.