Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: PEM
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Heat Transfer
Article Type: Research Papers
J. Heat Transfer. April 2008, 130(4): 042409.
Published Online: March 18, 2008
... of the water electrolysis cell Comparisons of the computed results with the measured data Equivalent circuit for the solar water electrolysis process Schematic of the PEM solar electrolyzer Effects of temperature on hydrogen production rate Effects of...
Abstract
A photoelectrochemical model for hydrogen production from water electrolysis using proton exchange membrane is proposed based on Butler-Volmer kinetics for electrodes and transport resistance in the polymer electrolyte. An equivalent electrical circuit analogy is proposed for the sequential kinetic and transport resistances. The model provides a relation between the applied terminal voltage of electrolysis cell and the current density in terms of Nernst potential, exchange current densities, and conductivity of polymer electrolyte. Effects of temperature on the voltage, power supply, and hydrogen production are examined with the developed model. Increasing temperature will reduce the required power supply and increase the hydrogen production. An increase of about 11% is achieved by varying the temperature from 30 ° C to 80 ° C . The required power supply decreases as the illumination intensity becomes greater. The power supply due to the cathode overpotential does not change too much with the illumination intensity. Effects of the illumination intensity can be observed as the current density is relatively small for the examined illumination intensities.