Pool boiling around a heated cylinder having a diameter larger than the departure diameter of bubbles has been simulated numerically. Thermally uniform heat flux condition has been maintained at the outer surface of the cylinder, submerged at saturated water at atmospheric pressure. Using the Volume of Fluid type framework of liquid phase fraction in the domain, bubble life cycle around the horizontal cylinder has been analyzed to understand different stages of growth, sliding, merging prior to departure. An effort has also been made to characterize the bubble population, emerging from different sites over the cylindrical surface. The influence of cylinder inclination along its axis on these interfacial features has also been discussed using representative numerical simulation. Temperature profiles of the cylinder surface have been portrayed for both horizontal and inclined situations before presenting respective heat transfer coefficients.

This content is only available via PDF.
You do not currently have access to this content.