Abstract

The sensible and latent heat transfer are two essential considerations in investigating vapor condensation in the presence of non-condensable gases. In this paper, a new model for filmwise condensation heat transfer was developed using similarity transformation method. The expression of gas-liquid interfacial temperature, film thickness and heat transfer coefficient were derived and calculated, respectively. The analytical results showed that the temperature difference between gas-liquid interfacial and cooling surface is decreased as the increment of cooling surface temperature. In addition, the forced-convective condensation heat transfer and film thickness on the vertical surface were experimentally carried out. The proportion of latent heat is 62%~67% and relatively larger than sensible heat in the range of wall temperature (17~32.5 ºC). The experimental film thickness is less than analytical film thickness by 2%~10%. It is because that the liquid film may evaporate back to water vapor in the neighboring wall area due to high temperature of flue gas. Further, a new non-dimensional correlation of condensation heat transfer of flue gas is fitted with Nu=0.62Re0.5Ja0.67 and applicable range is Re=1000~2500, Ja=1.7~4.4. The fitting shows a good agreement between experimental and correlated values except some points in the low Nu number. The model proposed is applicable to predict the temperature and velocity distribution for condensation heat and mass transfer of multi-component gases.

This content is only available via PDF.
You do not currently have access to this content.