Abstract

Gas turbine engine has been widely applied to many heavy industries, such as marine propulsion and aerospace fields. Increasing turbine inlet temperature is one of the major ways to improve the thermal efficiency of gas turbines. Internal cooling for gas turbine cooling system is one of the most commonly used approaches to reduce the temperature of blades by casting various kinds of ribs in serpentine passages to enhance the heat transfer between the coolant and hot surface of gas turbine blades. This paper presents an investigation of the boot-shaped rib design to increase the heat transfer performances in the internal cooling turbine blades for gas turbine engines. By varying the design parameter configuration, the airflow is taken with higher momentum, and the minor vortex being at the front rib is relatively removed. The object of this investigation is increasing the reattachment airflow to the heated wall and reducing the vortex occurring near the rib for improving the performances of heat transfer using three-dimensional (3D) Reynolds-averaged Navier–Stokes (RANS) with the SST model. A parametric study of the boot-shaped rib design was performed using various geometric parameters related to the heel-angle, toe-angle, slope-height, and rib-width to find their effect on the Nusselt number, temperature on the ribbed wall, friction factor ratio of the channel, and thermal performance factor. The numerical results showed that the heat transfer performances are significantly increased with the heel-angle, toe-angle, slope-height, while that remained relatively constant with the rib width.

References

References
1.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.10.1016/0017-9310(92)90309-G
2.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Lee
,
C. P.
,
1992
, “
Influence of Surface Heat Flux Ratio on Heat Transfer Augmentation in Square Channels With Parallel, Crossed, and V-Shaped Angled Ribs
,”
ASME J. Turbomach.
,
114
(
4
), pp.
872
880
.10.1115/1.2928042
3.
Chandra
,
P. R.
,
Alexander
,
C. R.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer and Friction Behaviors in Rectangular Channels With Varying Number of Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
46
(
3
), pp.
481
495
.10.1016/S0017-9310(02)00297-1
4.
Lau
,
S. C.
,
McMillin
,
R. D.
, and
Han
,
J. C.
,
1991
, “
Heat Transfer Characteristics of Turbulent Flow in a Square Channel With Angled Discrete Ribs
,”
ASME J. Turbomach.
,
113
(
3
), pp.
367
374
.10.1115/1.2927885
5.
Kim
,
K. Y.
, and
Kim
,
S. S.
,
2002
, “
Shape Optimization of Rib-Roughened Surface to Enhance Turbulent Heat Transfer
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2719
2727
.10.1016/S0017-9310(01)00358-1
6.
Kim
,
H. M.
, and
Kim
,
K. Y.
,
2004
, “
Design Optimization of Rib-Roughened Channel to Enhance Turbulent Heat Transfer
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5159
5168
.10.1016/j.ijheatmasstransfer.2004.05.035
7.
Kim
,
H. M.
, and
Kim
,
K. Y.
,
2006
, “
Shape Optimization of Three-Dimensional Channel Roughened by Angled Ribs With RANS Analysis of Turbulent Heat Transfer
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4013
4022
.10.1016/j.ijheatmasstransfer.2006.03.039
8.
Shi
,
X.
,
Gao
,
J.
,
Xu
,
L.
, and
Li
,
F.
,
2013
, “
Heat Transfer Performance Comparison of Steam and Air in Gas Turbine Cooling Channels With Different Rib Angles
,”
Int. J. Heat Mass Transfer
,
49
(
11
), pp.
1577
1586
.10.1007/s00231-013-1171-6
9.
Zeng
,
J.
,
Gao
,
T.
,
Li
,
J.
,
Zhu
,
J.
, and
Fei
,
J.
,
2016
, “
Numerical Investigation on Flow and Heat Transfer Characteristics of Steam and Mist/Steam in Internal Cooling Channels With Different Rib Angles
,”
ASME Paper No. GT2016-56812
. 10.1115/GT2016-56812
10.
Zheng
,
S.
,
Ji
,
T.
,
Xie
,
G.
, and
Sundén
,
B.
,
2014
, “
On the Improvement of the Poor Heat Transfer Lee-Side Regions of Square Cross-Section Ribbed Channels
,”
Numer. Heat Transfer, Part A
,
66
(
9
), pp.
963
989
.10.1080/10407782.2014.894396
11.
Kaewchoothong
,
N.
,
Maliwan
,
K.
,
Takeishi
,
K.
, and
Nuntadusit
,
C.
,
2017
, “
Effect of Inclined Ribs on Heat Transfer Coefficient in Stationary Square Channel
,”
Theor. Appl. Mech. Lett.
,
7
(
6
), pp.
344
350
.10.1016/j.taml.2017.09.013
12.
Gentry
,
M. C.
, and
Jacobi
,
A. M.
,
1997
, “
Heat Transfer Enhancement by Delta-Wing Vortex Generators on a Flat Plate: Vortex Interactions With the Boundary Layer
,”
Exp. Therm. Fluid Sci.
,
14
(
3
), pp.
231
242
.10.1016/S0894-1777(96)00067-2
13.
Coletti
,
F.
,
Jacono
,
D. L.
,
Cresci
,
I.
, and
Arts
,
T.
,
2014
, “
Turbulent Flow in Rib-Roughened Channel Under the Effect of Coriolis and Rotational Buoyancy Forces
,”
Phys. Fluids
,
26
(
4
), p.
0451111
.10.1063/1.4871019
14.
Wang
,
Z.
, and
Corral
,
R.
,
2018
, “
Numerical Study of Uneven Wall-Heating Effect for a One Side Rib-Roughened Cooling Channel Subject to Rotation
,”
Aeronaut. J.
,
122
(
1257
), pp.
1697
1710
.10.1017/aer.2018.96
15.
Shamloo
,
H.
, and
Pirzadeh
,
B.
,
2015
, “
Analysis of Roughness Density and Flow Submergence Effects on Turbulence Flow Characteristics in Open Channels Using a Large Eddy Simulation
,”
Appl. Math. Modell.
,
39
(
3–4
), pp.
1074
1086
.10.1016/j.apm.2014.07.023
16.
Cukurel
,
B.
,
Arts
,
T.
, and
Selcan
,
C.
,
2012
, “
Conjugate Heat Transfer Characterization in Cooling Channels
,”
J. Therm. Sci.
,
21
(
3
), pp.
286
294
.10.1007/s11630-012-0546-1
17.
Jain
,
S. K.
,
Agrawal
,
G. D.
, and
Misra
,
R.
,
2019
, “
A Detailed Review on Various V-Shaped Ribs Roughened Solar Air Heater
,”
Heat Mass Transfer
,
55
(
12
), pp.
3369
3412
.10.1007/s00231-019-02656-4
18.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
108
123
.10.1205/026387698524686
19.
Desale
,
S.
, and
Pradhan
,
V. H.
,
2015
, “
Numerical Solution of Boundary Layer Flow Equation With Viscous Dissipation Effect Along a Flat Plate With Variable Temperature
,”
Procedia Eng.
,
127
, pp.
846
853
.10.1016/j.proeng.2015.11.421
20.
Puzu
,
N.
,
Prasertsan
,
S.
, and
Nuntadusit
,
C.
,
2019
, “
Heat Transfer Enhancement and Flow Characteristics of Vortex Generating Jet on Flat Plate With Turbulent Boundary Layer
,”
Appl. Therm. Eng.
,
148
, pp.
196
207
.10.1016/j.applthermaleng.2018.11.035
21.
Moon
,
M. A.
,
Park
,
M. J.
, and
Kim
,
K. Y.
,
2014
, “
Evaluation of Heat Transfer Performances of Various Rib Shapes
,”
Int. J. Heat Mass Transfer
,
71
, pp.
275
284
.10.1016/j.ijheatmasstransfer.2013.12.026
22.
Park
,
M. J.
,
Moon
,
M. A.
, and
Kim
,
K. Y.
,
2012
, “
Heat Transfer Performance in Triangular Internal Cooling Channel With Various Rib Geometries
,”
Fifth International Symposium on Fluid Machinery and Fluids Engineering
, Jeju, Korea, Oct. 24–27.https://www.researchgate.net/publication/283045449_HEAT_TRANSFER_PERFORMANCE_IN_TRIANGULAR_INTERNAL_COOLING_CHANNEL_WITH_VARIOUS_RIB_GEOMETRIES
23.
Moon
,
M. A.
, and
Kim
,
K. Y.
,
2016
, “
Exergetic Analysis for Optimization of a Rotating Equilateral Triangular Cooling Channel With Staggered Square Ribs
,”
Int. J. Fluid Mach. Syst.
,
9
(
3
), pp.
229
236
.10.5293/IJFMS.2016.9.3.229
24.
ANSYS, Inc.
,
2018
, “
ANSYS CFX-19.1
,”
ANSYS
,
Hanoi, Vietnam
.
25.
Zhu
,
J.
,
Wang
,
X.
,
Zhang
,
C.
, and
Miao
,
H.
,
2018
, “
Shape Optimization of Partly Removed Straight Ribs in Turbine Internal Rectangular Cooling Channel With 45 Degree Ribs
,”
ASME Paper No. GT2018-75221
. 10.1115/GT2018-75221
26.
Walker
,
D.
, and
Zausner
,
J.
,
2007
, “
RANS Evaluations of Internal Cooling Passage Geometries: Ribbed Passages and a 180 Degree Bend
,”
ASME Paper No. GT2007-27830
.10.1115/GT2007-27830
You do not currently have access to this content.