Abstract

In this paper, the effect of Coriolis force is explored on convective instability of a doubly diffusive incompressible couple stress fluid layer with gravity acting downward. A linear stability analysis is used to obtain the conditions for the onset of stationary and oscillatory convection in the closed form. Being a multiparameter instability problem, results for some isolated cases have been presented to illustrate interesting corners of parameter space. It is found that the neutral curve for oscillatory onset forms a closed-loop which is separate from the neutral curve for stationary onset indicating the requirement of three critical thermal Rayleigh numbers to specify the linear instability criteria instead of the usual single value. Besides, the simultaneous presence of rotation and the addition of heavy solute to the bottom of the layer exhibit an intriguing possibility of destabilizing the system under certain conditions, in contrast to their stabilizing effect when they are present in isolation. The implication of couple stresses on each of the aforementioned anomalies is clearly brought out. The spatial wavelength of convective cells at the onset is also discussed.

References

References
1.
Turner
,
J. S.
,
1973
,
Buoyancy Effects in Fluids
,
Cambridge University Press
,
New York
.
2.
Bodenschatz
,
E.
,
Pesch
,
W.
, and
Ahlers
,
G.
,
2000
, “
Recent Developments in Rayleigh-Benard Convection
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
709
778
.10.1146/annurev.fluid.32.1.709
3.
Getling
,
A. V.
,
2001
,
Rayleigh-Benard Convection: Structures and Dynamics
,
World Scientific Press
,
Singapore
.
4.
Drazin
,
P. G.
, and
Reid
,
D. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
5.
Siddheshwar
,
P. G.
, and
Titus
,
P. S.
,
2013
, “
Nonlinear Rayleigh-Benard Convection With Variable Heat Source
,”
ASME J. Heat Transfer
,
135
(
12
), p.
122502
.10.1115/1.4024943
6.
Huppert
,
H. E.
, and
Turner
,
J. S.
,
1981
, “
Double–Diffusive Convection
,”
J. Fluid Mech.
,
106
(
1
), pp.
299
329
.10.1017/S0022112081001614
7.
Platten
,
J. K.
, and
Legros
,
J. C.
,
1984
,
Convection in Liquids
,
Springer-Verlag
,
New York
.
8.
Chen
,
C. F.
, and
Johnson
,
D. H.
,
1984
, “
Double-Diffusive Convection: A Report on an Engineering Foundation Conference
,”
J. Fluid Mech.
,
138
, pp.
405
416
.10.1017/S0022112084000173
9.
Veronis
,
G.
,
1965
, “
On Finite Amplitude Instability in Thermohaline Convection
,”
J. Mar. Res.
,
23
, pp.
1
17
.
10.
Veronis
,
G.
,
1968
, “
Effect of a Stabilizing Gradient of Solute on Thermal Convection
,”
J. Fluid Mech.
,
34
(
2
), pp.
315
336
.10.1017/S0022112068001916
11.
Baines
,
P. G.
, and
Gill
,
A. E.
,
1969
, “
On Thermohaline Convection With Linear Gradients
,”
J. Fluid Mech.
,
37
(
2
), pp.
289
306
.10.1017/S0022112069000553
12.
Animasaun
,
I. L.
,
2016
, “
Double Diffusive Unsteady Convective Micropolar Flow Past a Vertical Porous Plate Moving Through Binary Mixture Using Modified Boussinesq Approximation
,”
Ain Shams Eng. J.
,
7
(
2
), pp.
755
765
.10.1016/j.asej.2015.06.010
13.
Mekheimer
,
K. S.
,
2008
, “
Effect of the Induced Magnetic Field on Peristaltic Flow of a Couple Stress Fluid
,”
Phys. Lett. A
,
372
(
23
), pp.
4271
4278
.10.1016/j.physleta.2008.03.059
14.
Stokes
,
V. K.
,
1966
, “
Couple Stresses in Fluids
,”
Phys. Fluids
,
9
(
9
), pp.
1709
1715
.10.1063/1.1761925
15.
Ahmadi
,
G.
,
1979
, “
Stability of a Cosserat Fluid Layer Heated From Below
,”
Acta Mech.
,
31
(
3–4
), pp.
243
252
.10.1007/BF01176852
16.
Malashetty
,
M. S.
, and
Basavaraja
,
D.
,
2005
, “
Effect of Thermal/Gravity Modulation on the Onset of Rayleigh–Benard Convection in a Couple Stress Fluid
,”
J. Transp. Phenom.
,
7
, pp.
31
44
.
17.
Sunil
,
Devi
,
R.
, and
Mahajan
,
A.
, “
Global Stability for Thermal Convection in a Couple-Stress Fluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
938
942
.10.1016/j.icheatmasstransfer.2011.03.030
18.
Malashetty
,
M. S.
,
Gaikwad
,
S. N.
, and
Swamy
,
M.
,
2006
, “
An Analytical Study of Linear and Non-Linear Double Diffusive Convection With Soret Effect in Couple Stress Liquids
,”
Int. J. Therm. Sci.
,
45
(
9
), pp.
897
907
.10.1016/j.ijthermalsci.2005.12.005
19.
Gaikwad
,
S. N.
,
Malashetty
,
M. S.
, and
Rama Prasad
,
K.
,
2007
, “
An Analytical Study of Linear and Non-Linear Double Diffusive Convection With Soret and Dufour Effects in Couple Stress Liquids
,”
Int. J. Nonlinear Mech.
,
42
(
7
), pp.
903
913
.10.1016/j.ijnonlinmec.2007.03.009
20.
Shivakumara
,
I. S.
, and
Naveen Kumar
,
S. B.
,
2014
, “
Linear and Weakly Nonlinear Triple Diffusive Convection in a Couple Stress Fluid Layer
,”
Int. J. Heat Mass Transfer
,
68
, pp.
542
553
.10.1016/j.ijheatmasstransfer.2013.09.051
21.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
Oxford, UK
.
22.
Sparrow
,
E. M.
, and
Goldstein
,
L.
,
1976
, “
Effect of Rotation and Coolant Throughflow on the Heat Transfer and Temperature Field in an Enclosure
,”
ASME J. Heat Transfer
,
98
(
3
), pp.
387
394
.10.1115/1.3450565
23.
Kloosterziel
,
R. C.
, and
Carnevale
,
G. F.
,
2003
, “
Closed-Form Linear Stability Conditions for Rotating Rayleigh–Benard Convection With Rigid Stress-Free Upper and Lower Boundaries
,”
J. Fluid Mech.
,
480
, pp.
25
42
.10.1017/S0022112002003294
24.
Arikoglu
,
A.
,
Komurgoz
,
G.
,
Ozkol
,
I.
, and
Gunes
,
A. Y.
,
2010
, “
Combined Effects of Temperature and Velocity Jump on the Heat Transfer, Fluid Flow, and Entropy Generation Over a Single Rotating Disk
,”
ASME J. Heat Transfer
,
132
(
11
), p.
111703
.10.1115/1.4002098
25.
Linden
,
P. F.
,
1974
, “
Salt Fingers in a Steady Shear Flow
,”
Geophys. Fluid Dyn.
,
6
(
1
), pp.
1
27
.10.1080/03091927409365785
26.
Schmitt
,
R. W.
, and
Lamber
,
R. B.
,
1979
, “
The Effect of Rotation on Salt Fingers
,”
J. Fluid Mech.
,
90
(
3
), pp.
449
463
.10.1017/S0022112079002342
27.
Sengupta
,
S.
, and
Gupta
,
A. S.
,
1971
, “
Thermohaline Convection With Finite Amplitude in a Rotating Fluid
,”
J. Appl. Math. Phys. (ZAMP)
,
22
(
5
), pp.
906
914
.10.1007/BF01591818
28.
Antoranz
,
J. C.
, and
Velarde
,
M. G.
,
1979
, “
Thermal Diffusion and Convective Stability: The Role of Uniform Rotation of the Container
,”
Phys. Fluids
,
22
(
6
), pp.
1038
1043
.10.1063/1.862709
29.
Shivakumara
,
I. S.
,
Rudraiah
,
N.
, and
Narayanan
,
R.
,
1985
, “
Further Results on Stability Boundaries and a Weekly Non-Linear Analysis for Double Diffusive Convection With Rotation
,”
Int. Commun. Heat Mass Transfer
,
12
(
3
), pp.
299
312
.10.1016/0735-1933(85)90053-3
30.
Pearlstein
,
A. J.
,
1981
, “
Effect of Rotation on the Stability of a Doubly Diffusive Fluid Layer
,”
J. Fluid Mech.
,
103
(
1
), pp.
389
412
.10.1017/S0022112081001390
31.
Kumar
,
P.
, and
Singh
,
M.
,
2009
, “
Rotatory Thermosolutal Convection in a Couple-Stress Fluid
,”
Z. Naturforsch., A
,
64
(
7
), pp.
448
454
.10.1515/zna-2009-7-807
32.
Makinde
,
O. D.
, and
Animasaun
,
I. L.
,
2016
, “
Bioconvection in MHD Nanofluid Flow With Nonlinear Thermal Radiation and Quartic Autocatalysis Chemical Reaction Past an Upper Surface of a Paraboloid of Revolution
,”
Int. J. Therm. Sci.
,
109
, pp.
159
171
.10.1016/j.ijthermalsci.2016.06.003
33.
Makinde
,
O. D.
, and
Animasaun
,
I. L.
,
2016
, “
Thermophoresis and Brownian Motion Effects on MHD Bioconvection of Nanofluid With Nonlinear Thermal Radiation and Quartic Chemical Reaction Past an Upper Horizontal Surface of a Paraboloid of Revolution
,”
J. Mol. Liq.
,
221
, pp.
733
743
.10.1016/j.molliq.2016.06.047
You do not currently have access to this content.