Abstract

In this work, a solution technique is proposed by synergistically combining asymptotics and computational fluid dynamics to ascertain a problem of laminar mixed convection heat transfer in a vertical channel. First, numerical simulation is carried out on a vertical channel that consists of an aluminum heater plate assembly at the center of the channel. The numerical model is treated as a conjugate heat transfer problem, and the concept of perturbation and blending is incorporated wherein the limiting solution of natural and forced convection is obtained in terms of average Nusselt number. These correlations are then blended to find a unified composite correlation that work very well for extreme limits of mixed convection. The Richardson number is chosen as an independent variable in the present analysis; as a result, the Nusselt number correlation is cogent for the mixed convection region. Upon performing the numerical simulations, the results of the mixed convection are then compared with experimental results available in the literature for the purpose of validation of the numerical solution. The results of the present work emphasize that, with minimum computational fluid dynamics (CFD) solutions, one can obtain a reasonably good composite correlation for the Nusselt number for mixed convection and also a substantial reduction of computations is possible ensuing an asymptotically flawless solution.

References

References
1.
Chen
,
T. S.
,
Armaly
,
B. F.
, and
Ramachandran
,
N.
,
1986
, “
Correlations for Laminar Mixed Convection Flows on Vertical, Inclined and Horizontal Flat Plates
,”
ASME J. Heat Transfer
,
108
(
4
), pp.
835
840
.10.1115/1.3247020
2.
Chen
,
Y. C.
, and
Chung
,
J. N.
,
1998
, “
Stability of Mixed Convection in a Differentially Heated Vertical Channel
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
127
132
.10.1115/1.2830035
3.
Gururaja Rao
,
C.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2002
, “
Effect of Surface Radiation on Conjugate Mixed Convection in a Vertical Channel With a Discrete Heat Source in Each Wall
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3331
3347
.10.1016/S0017-9310(02)00061-3
4.
Premachandran
,
B.
, and
Balaji
,
C.
,
2006
, “
Conjugate Mixed Convection With Surface Radiation From a Horizontal Channel With Protruding Heat Sources
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3568
3582
.10.1016/j.ijheatmasstransfer.2006.02.044
5.
Venugopal
,
G.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2008
, “
A Correlation for Laminar Mixed Convection From a Vertical Plates Using Transient Experiments
,”
Heat Mass Transfer
,
44
(
12
), pp.
1417
1425
.10.1007/s00231-008-0380-x
6.
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2011
, “
A Correlation for Nusselt Number Under Turbulent Mixed Convection Using Transient Heat Transfer Experiments
,”
Front. Heat Mass Transfer
,
2
, p.
023008
.10.5098/hmt.v2.2.3008
7.
Hajipour
,
M.
, and
Dehkordi
,
A. M.
,
2011
, “
Mixed Convection in a Vertical Channel Containing Porous and Viscous Fluid Regions With Viscous Dissipation and Inertial Effects: A Perturbation Solution
,”
ASME J. Heat Transfer
,
133
(
9
), p.
092602
.10.1115/1.4003969
8.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2011
, “
Experimental Investigation of Flow Assisted Mixed Convection in High Porosity Foams in Vertical Channels
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5231
5241
.10.1016/j.ijheatmasstransfer.2011.08.020
9.
Premachandran
,
B.
, and
Balaji
,
C.
,
2006
, “
A Correlation for Mixed Convection Heat Transfer From Converging, Parallel and Diverging Channels With Uniform Volumetric Heat Generating Plates
,”
Int. Commun. Heat Mass Transfer
,
33
(
3
), pp.
350
356
.10.1016/j.icheatmasstransfer.2005.12.001
10.
Grosan
,
T.
, and
Pop
,
I.
,
2012
, “
Fully Developed Mixed Convection in a Vertical Channel Filled by a Nanofluid
,”
ASME J. Heat Transfer
,
134
(
8
), p.
082501
.10.1115/1.4006159
11.
Fu
,
W.-S.
,
Chao
,
W.-S.
,
Peng
,
T.-E.
, and
Li
,
C.-G.
,
2016
, “
Flow Downward Penetration of Vertical Parallel Plates Natural Convection With an Asymmetrically Heated Wall
,”
Int. Commun. Heat Mass Transfer
,
74
, pp.
55
62
.10.1016/j.icheatmasstransfer.2016.03.006
12.
Derfoufi
,
S.
,
Moufekkir
,
F.
, and
Mezrhab
,
A.
,
2016
, “
Computation of Mixed Convection and Volumetric Radiation in Vertical Channel Based on Hybrid Thermal Lattice Boltzmann Method
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091003
.10.1115/1.4032948
13.
Desrayaud
,
G.
,
Chénier
,
E.
,
Joulin
,
A.
,
Bastide
,
A.
,
Brangeon
,
B.
,
Caltagirone
,
J. P.
,
Cherif
,
Y.
,
Eymard
,
R.
,
Garnier
,
C.
,
Giroux-Julien
,
S.
,
Harnane
,
Y.
,
Joubert
,
P.
,
Laaroussi
,
N.
,
Lassue
,
S.
,
Le Quéré
,
P.
,
Li
,
R.
,
Saury
,
D.
,
Sergent
,
A.
,
Xin
,
S.
, and
Zoubir
,
A.
,
2013
, “
Benchmark Solutions for Natural Convection Flows in Vertical Channels Submitted to Different Open Boundary Conditions
,”
Int. J. Therm. Sci.
,
72
, pp.
18
33
.10.1016/j.ijthermalsci.2013.05.003
14.
Bhowmik
,
H.
,
Tso
,
C. P.
, and
Tou
,
K. W.
,
2005
, “
Analyses of Convection Heat Transfer From Discrete Heat Sources in a Vertical Rectangular Channel
,”
ASME J. Electron. Packag.
,
127
(
3
), pp.
215
222
.10.1115/1.1938207
15.
Chang
,
T. S.
,
2007
, “
Effects of a Finite Section With Linearly Varying Wall Temperature on Mixed Convection in a Vertical Channel
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2346
2354
.10.1016/j.ijheatmasstransfer.2006.10.042
16.
Herwig
,
H.
,
1998
, “
Laminar Boundary Layers/Asymptotic and Scaling Considerations
,”
Advances in Boundary Layer Theory
,
A.
Kluwick
, ed.,
Springer-Verlag
,
Heidelberg, Germany
, pp.
9
48.
17.
Hölling
,
M.
, and
Herwig
,
H.
,
2005
, “
Asymptotic Analysis of the Near Wall Region of Turbulent Natural Convection Flows
,”
J. Fluid Mech.
,
541
(
1
), pp.
383
397
.10.1017/S0022112005006300
18.
Balaji
,
C.
, and
Herwig
,
H.
,
2003
, “
The Use of ACFD in Problems Involving Surface Radiation & Free Convection
,”
Int. Commun. Heat Mass Transfer
,
30
(
2
), pp.
251
259
.10.1016/S0735-1933(03)00036-8
19.
Balaji
,
C.
,
Hölling
,
M.
, and
Herwig
,
H.
,
2007
, “
A General Methodology for Treating Mixed Convection Problems Using Asymptotic Computational Fluid Dynamics (ACFD)
,”
Int. Commun. Heat Mass Transfer
,
34
(
6
), pp.
682
691
.10.1016/j.icheatmasstransfer.2007.03.006
20.
Balaji
,
C.
,
Hölling
,
M.
, and
Herwig
,
H.
,
2007
, “
Combined Laminar Mixed Convection and Surface Radiation Using Asymptotic Computational Fluid Dynamics (ACFD)
,”
Heat Mass Transfer
,
43
(
6
), pp.
567
577
.10.1007/s00231-006-0145-3
21.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.10.1002/aic.690180606
22.
ANSYS FLUENT,
2017
, “®ANSYS [ANSYS Fluent], 15.0, Help System, User's Guide/Theory Guide,” ANSYS, Inc., Canonsburg, PA, accessed Sept. 9,
2019
, http://www.ansys.com/Products/Fluids/ANSYS-Fluent
23.
Bejan
,
A.
,
1993
,
Heat Transfer
,
Wiley
,
New York
.
You do not currently have access to this content.