Abstract

This analysis studies the impact of an inclined magnetic field, hall current, and thermal radiation on fully developed electrically conducting mixed convection flow through a channel. The governing equations are nondimensionalized. The resulting system of nonlinear ordinary differential equations is solved utilizing spectral quasi-linearization method. Impact of all the pertaining flow parameters of this study on all the dimensionless profiles was calculated and presented through plots. Also, the nature of the physical parameters was calculated and presented in table form. This study clearly exhibits that the inclined magnetic field influences the fluid flow remarkably.

References

References
1.
Jaluria
,
Y.
, and
Himasekhar
,
K.
,
1983
, “
Buoyancy-Induced Two-Dimensional Vertical Flows in a Thermally Stratified Environment
,”
Comput. Fluids
,
11
(
1
), pp.
39
49
.10.1016/0045-7930(83)90012-9
2.
Aung
,
W.
, and
Worku
,
G.
,
1986
, “
Theory of Fully Developed, Combined Convection Including Flow Reversal
,”
ASME J. Heat Transfer
,
108
(2), pp.
485
488
.10.1115/1.3246958
3.
Cheng
,
C. H.
,
Kou
,
H. S.
, and
Huang
,
W. H.
,
1990
, “
Flow Reversal and Heat Transfer of Fully Developed Mixed Convection in Vertical Channels
,”
J. Thermophys. Heat Transfer
,
4
(
3
), pp.
375
383
.10.2514/3.190
4.
Azizi
,
Y.
,
Benhamou
,
B.
,
Galanis
,
N.
, and
El-Ganaoui
,
M.
,
2007
, “
Buoyancy Effects on Upward and Downward Laminar Mixed Convection Heat and Mass Transfer in a Vertical Channel
,”
Int J. Numer. Methods Heat Fluid Flow
,
17
(
3
), pp.
333
353
.10.1108/09615530710730193
5.
Umavathi
,
J. C.
, and
Sheremet
,
M. A.
,
2016
, “
Mixed Convection Flow of an Electrically Conducting Fluid in a Vertical Channel Using Robin Boundary Conditions With Heat Source/Sink
,”
Eur. J. Mech., B/Fluids
,
55
, pp.
132
145
.10.1016/j.euromechflu.2015.08.013
6.
Nassim
,
M. S.
,
Samir
,
H.
, and
Nawal
,
S.
,
2017
, “
Simulation of Mixed Convection in a Horizontal Channel Heated From Below by the Lattice Boltzmann Method
,”
Eur. Phys. J. Appl. Phys.
,
78
(
3
), p.
34806
.10.1051/epjap/2017170046
7.
Khan
,
N.
,
Dilawar
,
M.
,
Hang
,
X.
,
Zhao
,
Q.
, and
Sun
,
Q.
,
2018
, “
Analysis of Mixed Convection in a Vertical Channel in the Presence of Electrical Double Layers
,”
Z. Naturforsch., A
,
73
(
8
), pp.
741
751
.10.1515/zna-2018-0097
8.
Mahapatra
,
T. R.
,
Pal
,
D.
, and
Mondal
,
S.
,
2013
, “
Mixed Convection Flow in an Inclined Enclosure Under Magnetic Field With Thermal Radiation and Heat Generation
,”
Int. Commun. Heat Mass Transfer
,
41
, pp.
47
56
.10.1016/j.icheatmasstransfer.2012.10.028
9.
Noreen
,
S.
,
Ahmad
,
B.
,
Ahmed
,
B.
, and
Hayat
,
T.
,
2013
, “
Mixed Convection Flow of Nanofluid in Presence of an Inclined Magnetic Field
,”
PLoS One
,
8
(
9
), p.
e73248
.10.1371/journal.pone.0073248
10.
Abbasi
,
F. M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2015
, “
Effects of Inclined Magnetic Field and Joule Heating in Mixed Convective Peristaltic Transport of Non-Newtonian Fluids
,”
Bull. Pol. Acad. Sci. Tech. Sci.
,
63
(
2
), pp.
501
514
.10.1515/bpasts-2015-0058
11.
Keltner
,
J. R.
,
Roos
,
M. S.
,
Brakeman
,
P. R.
, and
Budinger
,
T. F.
,
1990
, “
Magnetohydrodynamics of Blood Flow
,”
Magn. Reson. Med.
,
16
(
1
), pp.
139
149
.10.1002/mrm.1910160113
12.
Kainz
,
W.
,
Guag
,
J.
,
Benkler
,
S.
,
Szczerba
,
D.
,
Neufeld
,
E.
,
Krauthamer
,
V.
,
Myklebust
,
J.
,
Bassen
,
H.
,
Chang
,
I.
,
Chavannes
,
N.
,
Kim
,
J. H.
,
Sarntinoranont
,
M.
, and
Kuster
,
N.
,
2010
, “
Development and Validation of a Magneto-Hydrodynamic Solver for Blood Flow Analysis
,”
Phys. Med. Biol.
,
55
(
23
), pp.
7253
7261
.10.1088/0031-9155/55/23/005
13.
Kyriakou
,
A.
,
Neufeld
,
E.
,
Szczerba
,
D.
,
Kainz
,
W.
,
Luechinger
,
R.
,
Kozerke
,
S.
,
McGregor
,
R.
, and
Kuster
,
N.
,
2012
, “
Patient-Specific Simulations and Measurements of the Magneto-Hemodynamic Effect in Human Primary Vessels
,”
Physiol. Meas.
,
33
(
2
), pp.
117
130
.10.1088/0967-3334/33/2/117
14.
Gregory
,
T. S.
,
Schmidt
,
E. J.
,
Zhang
,
S. H.
,
Kwong
,
R. Y.
,
Stevenson
,
W. G.
,
Murrow
,
J. R.
, and
Tse
,
Z. T.
,
2014
, “
Left-Ventricular Mechanical Activation and Aortic-Arch Orientation Recovered From Magneto-Hydrodynamic Voltages Observed in 12-Lead ECGs Obtained Inside MRIs: A Feasibility Study
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2480
2489
.10.1007/s10439-014-1109-2
15.
Abdollahzadeh Jamalabadi
,
M. Y.
, and
Keikha
,
A. J.
,
2016
, “
Numerical Investigation of Magneto Hydrodynamics Effects on Natural Silver Nanoparticles From Sargassum Angustifolium Used for Transporting a Pharmaceutical Compound in Cyprinus Carpio
,”
Entomol. Appl. Sci. Lett.
,
3
(
2
), pp.
52
64
.https://easletters.com/index.php?journal=journal&page=article&op=view&path%5B%5D=89
16.
Hussain
,
S.
,
Oztop
,
H. F.
,
Khalid
,
M.
, and
Nidal
,
A.-H.
,
2018
, “
Effects of Inclined Magnetic Field on Mixed Convection in a Nanofluid Filled Double Lid-Driven Cavity With Volumetric Heat Generation or Absorption Using Finite Element Method
,”
Chin. J. Phys.
,
56
(
2
), pp.
484
501
.10.1016/j.cjph.2018.02.002
17.
Farzad
,
B. T.
, and
Alireza
,
S.
,
2014
, “
Mixed-Convection and Thermal Radiation Heat Transfer in a Three-Dimensional Asymmetrically Heated Vertical Channel
,”
Heat Transfer Res.
,
45
(
6
), pp.
541
561
.10.1615/HeatTransRes.2014005946
18.
Ababsa
,
D.
, and
Saadi
,
B.
,
2017
, “
Modeling of Natural Convection and Radiative Heat Transfer in Inclined Thermosyphon System Installed in the Roof of a Building
,”
Heat Transfer Asian Res.
,
46
(
8
), pp.
1148
1157
.10.1002/htj.21266
19.
Qasem
,
N. A. A.
,
Imteyaz
,
B.
,
Ben-Mansour
,
R.
, and
Habib
,
M. A.
,
2017
, “
Effect of Radiation Heat Transfer on Naturally Driven Flow Through Parallel-Plate Vertical Channel
,”
Arab. J. Sci. Eng.
,
42
(
5
), pp.
1817
1829
.10.1007/s13369-016-2319-8
20.
Tighchi
,
H. A.
,
Sobhani
,
M.
, and
Esfahani
,
J. A.
,
2018
, “
Effect of Volumetric Radiation on Natural Convection in a Cavity With a Horizontal Fin Using the Lattice Boltzmann Method
,”
Eur. Phys. J. Plus.
,
133
(
1
), pp.
1
8
.10.1140/epjp/i2018-11835-1
21.
Rajamohan
,
G.
,
Ramesh
,
N.
, and
Kumar
,
P.
,
2018
, “
Combined Effect of Mixed Convection and Surface Radiation Heat Transfer for Thermally Developing Flow in Vertical Channels
,”
Heat Transfer Eng.
,
39
(
1
), pp.
27
39
.10.1080/01457632.2017.1280281
22.
Bellman
,
R.
,
Kagiwada
,
H.
, and
Kalaba
,
R.
,
1965
, “
Quasilinearization, System Identification and Prediction
,”
Int. J. Eng. Sci.
,
3
(
3
), pp.
327
334
.10.1016/0020-7225(65)90054-6
23.
Krivec
,
R.
, and
Mandelzweig
,
V. B.
,
2001
, “
Numerical Investigation of Quasilinearization Method in Quantum Mechanics
,”
Comput. Phys. Commun.
,
138
(
1
), pp.
69
79
.10.1016/S0010-4655(01)00191-6
24.
Mandelzweig
,
V. B.
,
2005
, “
Quasilinearization Method: Nonperturbative Approach to Physical Problems
,”
Phys. At. Nucl.
,
68
(
7
), pp.
1227
1258
.10.1134/1.1992578
25.
Motsa
,
S. S.
,
Sibanda
,
P.
, and
Shateyi
,
S.
,
2011
, “
On a New Quasilinearization Method for Systems of Nonlinear Boundary Value Problems
,”
Math. Methods Appl. Sci.
,
34
(
11
), pp.
1406
1413
.10.1002/mma.1449
26.
Motsa
,
S. S.
, and
Sibanda
,
P.
,
2013
, “
Some Modifications of the Quasilinearization Method With Higher-Order Convergence for Solving Nonlinear BVPs
,”
Numer. Algorithms
,
63
(
3
), pp.
399
417
.10.1007/s11075-012-9629-z
27.
Srinivasacharya
,
D.
, and
Himabindu
,
K.
,
2018
, “
Effect of Slip and Convective Boundary Conditions on Entropy Generation in a Porous Channel Due to Micropolar Fluid Flow
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
19
(
1
), pp.
11
24
.10.1515/ijnsns-2016-0056
You do not currently have access to this content.