Abstract

This paper aims to investigate the entropy generation in slip flow due to double rotating disks. Heat equation is formulated by considering effects of viscous dissipation, Joule heating and nonlinear thermal radiation. Brownian motion and thermophoresis effects of nanofluid are also discussed. Applied magnetic field is considered to be time dependent. Homogeneous–heterogeneous reactions are also studied. Von Karman transformations are used. Homotopy analysis method is implemented on system of equations for convergent series solutions. Influence of various flow parameters on entropy, Bejan number, velocity, temperature, Nusselt number, and skin friction is discussed through graphs and tables. Axial velocity decays for higher nonlinear mixed convection variable of temperature and velocity slip parameter. Temperature rises for larger thermal slip parameter and thermophoresis parameter. Entropy and Bejan number are increasing for higher estimation of homogeneous reaction parameter and diffusion parameters.

References

References
1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
International Mechanical Engineering Congress and Exhibition
,
San Francisco, CA
, pp.
99
106
.
2.
Bai
,
Y.
,
Liu
,
X.
,
Zhang
,
Y.
, and
Zhang
,
M.
,
2016
, “
Stagnation-Point Heat and Mass Transfer of MHD Maxwell Nanofluids Over a Stretching Surface in the Presence of Thermophoresis
,”
J. Mol. Liq.
,
224
, pp.
1172
1180
.10.1016/j.molliq.2016.10.082
3.
Xu
,
H.
, and
Pop
,
I.
,
2014
, “
Mixed Convection Flow of a Nanofluid Over a Stretching Surface With Uniform Free Stream in the Presence of Both Nanoparticles and Gyrotactic Microorganism
,”
Int. J. Heat Mass Transfer
,
75
, pp.
610
623
.10.1016/j.ijheatmasstransfer.2014.03.086
4.
Yin
,
C.
,
Zheng
,
L.
,
Zhang
,
C.
, and
Zhang
,
X.
,
2017
, “
Flow and Heat Transfer of Nanofluids Over a Rotating Disk With Uniform Stretching Rate in the Radial Direction
,”
Prop. Power Res.
,
6
(
1
), pp.
25
30
.10.1016/j.jppr.2017.01.004
5.
Hayat
,
T.
,
Khan
,
M. I.
,
Alsaedi
,
A.
, and
Khan
,
M. I.
,
2017
, “
Joule Heating and Viscous Dissipation in Flow of Nanomaterial by a Rotating Disk
,”
Int. Commun. Heat Mass Transfer
,
89
, pp.
190
197
.10.1016/j.icheatmasstransfer.2017.10.017
6.
Hayat
,
T.
,
Qayyum
,
S.
,
Imtiaz
,
M.
,
Alzahrani
,
F.
, and
Alsaedi
,
A.
,
2016
, “
Partial Slip Effect in Flow of Magnetite-Fe3O4 Nanoparticles Between Rotating Stretchable Disks
,”
J. Magn. Magn. Mater.
,
413
, pp.
39
48
.10.1016/j.jmmm.2016.04.025
7.
Hayat
,
T.
,
Qayyum
,
S.
,
Khan
,
M. I.
, and
Alsaedi
,
A.
,
2017
, “
Current Progresses About Probable Error and Statistical Declaration for Radiative Two Phase Flow Using Ag-H2O and Cu–H2O Nanomaterials
,”
Int. J. Hydrogen Energy
,
42
, pp.
29107
29120
.10.1016/j.ijhydene.2017.09.124
8.
Alamri
,
S. Z.
,
Ellahi
,
R.
,
Shehzad
,
N.
, and
Zeeshan
,
A.
,
2019
, “
Convective Radiative Plane Poiseuille Flow of Nanofluid Through Porous Medium With Slip: An Application of Stefan Blowing
,”
J. Mol. Liq.
,
273
, pp.
292
304
.10.1016/j.molliq.2018.10.038
9.
Zeeshan
,
A.
,
Shehzad
,
N.
, and
Ellahi
,
R.
,
2018
, “
Analysis of Activation Energy in Couette-Poiseuille Flow of Nanofluid in the Presence of Chemical Reaction and Convective Boundary Conditions
,”
Results Phys.
,
8
, pp.
502
512
.10.1016/j.rinp.2017.12.024
10.
Hayat
,
T.
,
Rashid
,
M.
,
Imtiaz
,
M.
, and
Alsaedi
,
A.
,
2017
, “
Nanofluid Flow Due to Rotating Disk With Variable Thickness and Homogeneous-Heterogeneous Reactions
,”
Int. J. Heat Mass Transfer
,
113
, pp.
96
105
.10.1016/j.ijheatmasstransfer.2017.05.018
11.
Li
,
X.
, and
Faghri
,
A.
,
2011
, “
Local Entropy Generation Analysis on Passive High-Concentration DMFCs (Direct Methanol Fuel Cell) With Different Cell Structures
,”
Energy
,
36
(
1
), pp.
403
414
.10.1016/j.energy.2010.10.024
12.
Guo
,
J.
,
Xu
,
M.
,
Cai
,
J.
, and
Huai
,
X.
,
2011
, “
Viscous Dissipation Effect on Entropy Generation in Curved Square Microchannels
,”
Energy
,
36
(
8
), pp.
5416
5423
.10.1016/j.energy.2011.06.060
13.
Van der Ham
,
L. V.
,
Gross
,
J.
, and
Kjelstrup
,
S.
,
2011
, “
Two Performance Indicators for the Characterization of the Entropy Production in a Process Unit
,”
Energy
,
36
(
6
), pp.
3727
3732
.10.1016/j.energy.2010.11.012
14.
Amani
,
E.
, and
Nobari
,
M. R. H.
,
2011
, “
A Numerical Investigation of Entropy Generation in the Entrance Region of Curved Pipes at Constant Wall Temperature
,”
Energy
,
36
(
8
), pp.
4909
4918
.10.1016/j.energy.2011.05.035
15.
Hayat
,
T.
,
Rafiq
,
M.
,
Ahmad
,
B.
, and
Asghar
,
S.
,
2017
, “
Entropy Generation Analysis for Peristaltic Flow of Nanoparticles in a Rotating Frame
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1775
1786
.10.1016/j.ijheatmasstransfer.2017.01.038
16.
Shit
,
G. C.
,
Haldar
,
R.
, and
Mandal
,
S.
,
2017
, “
Entropy Generation on MHD Flow and Convective Heat Transfer in a Porous Medium of Exponentially Stretching Surface Saturated by Nanofluids
,”
Adv. Powder Tech.
,
28
(
6
), pp.
1519
1530
.10.1016/j.apt.2017.03.023
17.
Afridi
,
M. I.
, and
Qasim
,
M.
,
2018
, “
Entropy Generation and Heat Transfer in Boundary Layer Flow Over a Thin Needle Moving in a Parallel Stream in the Presence of Nonlinear Rosseland Radiation
,”
Int. J. Therm. Sci.
,
123
, pp.
117
128
.10.1016/j.ijthermalsci.2017.09.014
18.
Govindaraju
,
M.
,
Ganesh
,
N. V.
,
Ganga
,
B.
, and
Hakeem
,
A. K. A.
,
2015
, “
Entropy Generation Analysis of Magneto Hydrodynamic Flow of a Nanofluid Over a Stretching Sheet
,”
J. Egypt. Math. Soc.
,
23
(
2
), pp.
429
434
.10.1016/j.joems.2014.04.005
19.
Hayat
,
T.
,
Nawaz
,
S.
, and
Alsaedi
,
A.
,
2017
, “
Entropy Generation in Peristalsis With Different Shapes of Nanomaterial
,”
J. Mol. Liq.
,
248
, pp.
447
458
.10.1016/j.molliq.2017.10.058
20.
Xie
,
Z. Y.
, and
Jian
,
Y. J.
,
2017
, “
Entropy Generation of Two-Layer Magnetohydrodynamic Electroosmotic Flow Through Microparallel Channels
,”
Energy
,
139
, pp.
1080
1093
.10.1016/j.energy.2017.08.038
21.
Hayat
,
T.
,
Khan
,
M. I.
,
Qayyum
,
S.
, and
Alsaedi
,
A.
,
2018
, “
Entropy Generation in Flow With Silver and Copper Nanoparticles
,”
Colloids Surf., A
,
539
, pp.
335
346
.10.1016/j.colsurfa.2017.12.021
22.
Liao
,
S. J.
,
2012
,
Homotopy Analysis Method in Non-Linear Differential Equations
, Springer, Berlin.
23.
Jafarimoghaddam
,
A.
,
2019
, “
On the Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) for a Nonlinearly Stretching Sheet Flow of Eyring-Powell Fluids
,”
Eng. Sci. Technol. Int. J.
,
22
(
2
), pp.
439
451
.10.1016/j.jestch.2018.11.001
24.
Rashidi
,
M. M.
,
Pour
,
S. A. M.
,
Hayat
,
T.
, and
Obaidat
,
S.
,
2012
, “
Analytic Approximate Solutions for Steady Flow Over a Rotating Disk in Porous Medium With Heat Transfer by Homotopy Analysis Method
,”
Comput. Fluid.
,
54
, pp.
1
9
.10.1016/j.compfluid.2011.08.001
25.
Hayat
,
T.
,
Khan
,
M. I.
,
Farooq
,
M.
,
Alsaedi
,
A.
,
Waqas
,
M.
, and
Yasmeen
,
T.
,
2016
, “
Impact of Cattaneo-Christov Heat Flux Model in Flow of Variable Thermal Conductivity Fluid Over a Variable Thicked Surface
,”
Int. J. Heat Mass Transf.
,
99
, pp.
702
710
.10.1016/j.ijheatmasstransfer.2016.04.016
You do not currently have access to this content.