Abstract

This paper presents the construction of a conservative radiation hydrodynamics algorithm in two-dimensional (2D) spherical geometry. First, we discretize the radiation transport equation (RTE) in that geometry. The discretization preserves the conservation of photons by integrating the original RTE in 2D spherical coordinates over both angular and spatial control volumes. Some numerical results are provided to verify the discretization for both optically thin and thick circumstances. Second, we formulate the staggered Lagrangian hydrodynamics in that geometry. The formulation preserves the conservation of mass, momentum, and energy by integrating the original hydrodynamic equations in 2D spherical coordinates over their respective control volumes. The original edge-centered artificial viscosity in 2D cylindrical geometry is also extended to be capable of capturing shock waves in 2D spherical geometry. Several 2D benchmark cases are provided to verify the scheme. The subsequent construction of the conservative radiation hydrodynamics algorithm is accomplished by the combination of the staggered Lagrangian hydrodynamics scheme and the solution of the RTE in 2D spherical geometry. Several 2D problems are calculated to verify our radiation hydrodynamics algorithm at the end.

References

References
1.
Shestakov
,
A. I.
,
Prasad
,
M. K.
,
Milovich
,
J. L.
,
Gentile
,
N. A.
,
Painter
,
J. F.
, and
Furnish
,
G.
,
2000
, “
The Radiation-Hydrodynamic ICF3D Code
,”
Comput. Methods Appl. Mech. Eng.
,
187
(
1–2
), pp.
181
200
.10.1016/S0045-7825(99)00117-6
2.
Castor
,
J. I.
,
2004
,
Radiation Hydrodynamics
,
Cambridge University Press
,
New York
.
3.
Ramis
,
R.
,
Schmalz
,
R. J.
, and
Meyer-ter-Vehn
,
J.
,
1988
, “
Multi-A Computer Code for One-Dimensional Multigroup Radiation Hydrodynamics
,”
Comput. Phys. Commun.
,
49
(
3
), pp.
475
505
.10.1016/0010-4655(88)90008-2
4.
Hodge
,
N. E.
,
Ferencz
,
R. M.
, and
Solberg
,
J. M.
,
2014
, “
Implementation of a Thermomechanical Model for the Simulation of Selective Laser Melting
,”
Comput. Mech.
,
54
(
1
), pp.
33
51
.10.1007/s00466-014-1024-2
5.
Soleimani
,
M.
,
Wriggers
,
P.
,
Rath
,
H.
, and
Stiesch
,
M.
,
2016
, “
Numerical Simulation and Experimental Validation of Biofilm in a Multi-Physics Framework Using an SPH Based Method
,”
Comput. Mech.
,
58
(
4
), pp.
619
633
.10.1007/s00466-016-1308-9
6.
Hirt
,
C. W.
,
Amsden
,
A. A.
, and
Cook
,
J. L.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
.10.1016/0021-9991(74)90051-5
7.
Maire
,
P. H.
,
2009
, “
A High-Order Cell-Centered Lagrangian Scheme for Compressible Fluid Flows in Two-Dimensional Cylindrical Geometry
,”
J. Comput. Phys.
,
228
(
18
), pp.
6882
6915
.10.1016/j.jcp.2009.06.018
8.
Margolin
,
L.
, and
Shashkov
,
M.
,
1999
, “
Using a Curvilinear Grid to Construct Symmetry-Preserving Discretizations for Lagrangian Gas Dynamics
,”
J. Comput. Phys.
,
149
(
2
), pp.
389
417
.10.1006/jcph.1998.6161
9.
Caramana
,
E. J.
, and
Whalen
,
P. P.
,
1998
, “
Numerical Preservation of Symmetry Properties of Continuum Problems
,”
J. Comput. Phys.
,
141
(
2
), pp.
174
198
.10.1006/jcph.1998.5912
10.
Kong
,
R.
,
Ambrose
,
M.
, and
Spanier
,
J.
,
2008
, “
Efficient, Automated Monte Carlo Methods for Radiation Transport
,”
J. Comput. Phys.
,
227
(
22
), pp.
9463
9476
.10.1016/j.jcp.2008.06.037
11.
Guo
,
Z.
,
Aber
,
J.
,
Garetz
,
B. A.
, and
Kumar
,
S.
,
2000
, “
Monte Carlo Simulation and Experiments of Pulsed Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transfer
,
73
, pp.
4411
4417
.
12.
Brooks
,
E. D.
,
Szőke
,
A.
, and
Peterson
,
J. D. L.
,
2006
, “
Piecewise Linear Discretization of Symbolic Implicit Monte Carlo Radiation Transport in the Difference Formulation
,”
J. Comput. Phys.
,
220
(
1
), pp.
471
497
.10.1016/j.jcp.2006.07.014
13.
Wawrenczuk
,
A.
,
Kuhnert
,
J.
, and
Siedow
,
N.
,
2007
, “
FPM Computations of Glass Cooling With Radiation
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
4656
4671
.10.1016/j.cma.2007.05.025
14.
Dedner
,
A.
, and
Vollmoller
,
P.
,
2002
, “
An Adaptive Higher Order Method for Solving the Radiation Transport Equation on Unstructured Grids
,”
J. Comput. Phys.
,
178
(
2
), pp.
263
289
.10.1006/jcph.2002.7001
15.
Carlson
,
B. G.
, and
Lathrop
,
K. D.
,
1968
,
Transport Theory D the Method of Discrete Ordinates, Computing Methods in Reactor Physics
,
Gordon and Breach
,
New York
.
16.
Fiveland
,
W. A.
,
1984
, “
Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
699
706
.10.1115/1.3246741
17.
Kim
,
I. K.
, and
Kim
,
W. S.
,
2001
, “
A Hybrid Spatial Differencing Scheme for Discrete Ordinates Method in 2D Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
,
44
(
3
), pp.
575
586
.10.1016/S0017-9310(00)00114-9
18.
Akamatsu
,
M.
, and
Guo
,
Z. X.
,
2013
, “
Comparison of Transmitted Pulse Trains Predicted by Duhamel's Superposition Theorem and Direct Pulse Simulation in a 3-D Discrete Ordinates System
,”
Numer. Heat Transfer Part B
,
63
(
3
), pp.
189
203
.10.1080/10407790.2013.751268
19.
Ragusa
,
J. C.
,
Guermond
,
J. L.
, and
Kanschat
,
G.
,
2012
, “
A Robust SN-DG-Approximation for Radiation Transport in Optically Thick and Diffusive Regimes
,”
J. Comput. Phys.
,
231
(
4
), pp.
1947
1962
.10.1016/j.jcp.2011.11.017
20.
Ghosh
,
K.
, and
Menon
,
S. V. G.
,
2010
, “
Fully Implicit 1D Radiation Hydrodynamics: Validation and Verification
,”
J. Comput. Phys.
,
229
(
19
), pp.
7488
7502
.10.1016/j.jcp.2010.06.031
21.
Avila
,
M.
,
Codina
,
R.
, and
Principe
,
J.
,
2011
, “
Spatial Approximation of the Radiation Transport Equation Using a Subgrid-Scale Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
5–8
), pp.
425
438
.10.1016/j.cma.2010.11.003
22.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite Volume Method for Predicting a Radiative Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
415
423
.10.1115/1.2910394
23.
Chui
,
E. H.
,
Raithby
,
G. D.
, and
Hughes
,
P. M. J.
,
1992
, “
Prediction of Radiative Transfer in Cylindrical Enclosures With the Finite Volume Method
,”
AIAA J. Thermophys. Heat Transfer
,
6
(
4
), pp.
605
611
.10.2514/3.11540
24.
Chai
,
J. C.
, and
Moder
,
J. P.
,
2000
, “
Radiation Heat Transfer Calculation Using an Angular-Multiblock Procedure
,”
Numer. Heat Transfer Part B
,
38
, pp.
1
13
.
25.
Kim
,
M. Y.
,
2008
, “
Assessment of the Axisymmetric Radiative Heat Transfer in a Cylindrical Enclosure With the Finite Volume Method
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5144
5153
.10.1016/j.ijheatmasstransfer.2008.03.012
26.
Hunter
,
B.
, and
Guo
,
Z. X.
,
2011
, “
Comparison of the Discrete-Ordinates Method and the Finite Volume Method for Steady-State and Ultrafast Radiative Transfer Analysis in Cylindrical Coordinates
,”
Numer. Heat Transfer Part B
,
59
(
5
), pp.
339
359
.10.1080/10407790.2011.572719
27.
Giani
,
S.
, and
Seaid
,
M.
,
2016
, “
hp-Adaptive Discontinuous Galerkin Methods for Simplified PN Approximations of Frequency-Dependent Radiative Transfer
,”
Comput. Methods Appl. Mech. Eng.
,
301
, pp.
52
79
.10.1016/j.cma.2015.12.013
28.
Olson
,
G. L.
,
2009
, “
Second-Order Time Evolution of PN Equations for Radiation Transport
,”
J. Comput. Phys.
,
228
(
8
), pp.
3072
3083
.10.1016/j.jcp.2009.01.012
29.
Edwards
,
J. D.
,
Morel
,
J. E.
, and
Knoll
,
D. A.
,
2011
, “
Nonlinear Variants of the TR/BDF2 Method for Thermal Radiative Diffusion
,”
J. Comput. Phys.
,
230
(
4
), pp.
1198
1214
.10.1016/j.jcp.2010.10.035
30.
Argyris
,
J.
,
Tenek
,
L.
, and
Oberg
,
F.
,
1995
, “
A Multilayer Composite Triangular Element for Steady-State Conduction/Convection/Radiation Heat Transfer in Complex Shells
,”
Comput. Methods Appl. Mech. Eng.
,
120
(
3–4
), pp.
271
301
.10.1016/0045-7825(94)00775-I
31.
Shen
,
W.
, and
Han
,
S.
,
2002
, “
Numerical Solution of Two-Dimensional Axisymmetric Hyperbolic Heat Conduction
,”
Comput. Mech.
,
29
(
2
), pp.
122
128
.10.1007/s00466-002-0321-3
32.
Argyris
,
J.
, and
Szimmat
,
J.
,
1992
, “
An Analysis of Temperature Radiation Interchange Problems
,”
Comput. Methods Appl. Mech. Eng.
,
94
(
2
), pp.
155
180
.10.1016/0045-7825(92)90145-A
33.
Bialecki
,
R. A.
,
Burczynski
,
T.
,
Dlugosz
,
A.
,
Kus
,
W.
, and
Ostrowski
,
Z.
,
2005
, “
Evolutionary Shape Optimization of Thermoelastic Bodies Exchanging Heat by Convection and Radiation
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
1839
1859
.10.1016/j.cma.2004.07.004
34.
Luo
,
X. P.
,
Wang
,
C. H.
,
Zhang
,
Y.
,
Yi
,
H. L.
, and
Tan
,
H. P.
,
2018
, “
Multiscale Solutions of Radiative Heat Transfer by the Discrete Unified Gas Kinetic Scheme
,”
Phys. Rev. E
,
97
(
6
), pp.
1
14
.10.1103/PhysRevE.97.063302
35.
Sun
,
W. J.
,
Jiang
,
S.
, and
Xu
,
K.
,
2015
, “
An Asymptotic Preserving Unified Gas Kinetic Scheme for Gray Radiative Transfer Equations
,”
J. Comput. Phys.
,
285
, pp.
265
279
.10.1016/j.jcp.2015.01.008
36.
Sun
,
W. J.
,
Jiang
,
S.
,
Xu
,
K.
, and
Li
,
S.
,
2015
, “
An Asymptotic Preserving Unified Gas Kinetic Scheme for Frequency-Dependent Radiative Transfer Equations
,”
J. Comput. Phys.
,
302
, pp.
222
238
.10.1016/j.jcp.2015.09.002
37.
Kim
,
M. Y.
,
Baek
,
S. W.
, and
Lee
,
C. Y.
,
2008
, “
Prediction of Radiative Heat Transfer Between Two Concentric Spherical Enclosures With the Finite Volume Method
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4820
4828
.10.1016/j.ijheatmasstransfer.2008.02.016
38.
Vachal
,
P.
, and
Wendroff
,
B.
,
2016
, “
On Preservation of Symmetry in R-Z Staggered Lagrangian Schemes
,”
J. Comput. Phys.
,
307
, pp.
496
507
.10.1016/j.jcp.2015.11.063
39.
Cheng
,
J.
, and
Shu
,
C. W.
,
2014
, “
Second Order Symmetry-Preserving Conservative Lagrangian Scheme for Compressible Euler Equations in Two-Dimensional Cylindrical Coordinates
,”
J. Comput. Phys.
,
272
, pp.
245
265
.10.1016/j.jcp.2014.04.031
40.
Darbandi
,
M.
, and
Schneider
,
G. E.
,
2000
, “
Performance of an Analogy-Based All-Speed Procedure Without Any Explicit Damping
,”
Comput. Mech.
,
26
(
5
), pp.
459
469
.10.1007/s004660000194
41.
Scovazzi
,
G.
,
Shadid
,
J. N.
,
Love
,
E.
, and
Rider
,
W. J.
,
2010
, “
A Conservative Nodal Variational Multiscale Method for Lagrangian Shock Hydrodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
49–52
), pp.
3059
3100
.10.1016/j.cma.2010.03.027
42.
Ramis
,
R.
,
Meyer-ter-Vehn
,
J.
, and
Ramírez
,
J.
,
2009
, “
MULTI2D-A Computer Code for Two-Dimensional Radiation Hydrodynamics
,”
Comput. Phys. Commun.
,
180
(
6
), pp.
977
994
.10.1016/j.cpc.2008.12.033
43.
Xia
,
G. H.
,
Zhao
,
Y.
,
Yeo
,
J. H.
, and
Lv
,
X.
,
2007
, “
A 3D Implicit Unstructured-Grid Finite Volume Method for Structural Dynamics
,”
Comput. Mech.
,
40
(
2
), pp.
299
312
.10.1007/s00466-006-0100-7
44.
Zhao
,
Y.
,
Tai
,
J.
, and
Ahmed
,
F.
,
2002
, “
Simulation of Micro Flows With Moving Boundaries Using High-Order Upwind FV Method on Unstructured Grids
,”
Comput. Mech.
,
28
(
1
), pp.
66
75
.10.1007/s00466-001-0271-1
45.
Markesteijn
,
A. P.
,
Karabasov
,
S. A.
,
Glotov
,
V. Y.
, and
Goloviznin
,
V. M.
,
2014
, “
A New Non-Linear Two-Time-Level Central Leapfrog Scheme in Staggered Conservation-Flux Variables for Fluctuating Hydrodynamics Equations With GPU Implementation
,”
Comput. Methods Appl. Mech. Eng.
,
281
, pp.
29
53
.10.1016/j.cma.2014.07.027
46.
Caramana
,
E. J.
,
Burton
,
D. E.
,
Shashkov
,
M. J.
, and
Whalen
,
P. P.
,
1998
, “
The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy
,”
J. Comput. Phys.
,
146
(
1
), pp.
227
262
.10.1006/jcph.1998.6029
47.
Caramana
,
E. J.
,
Shashkov
,
M. J.
, and
Whalen
,
P. P.
,
1998
, “
Formulations of Artificial Viscosity for Multi-Dimensional Shock Wave Computations
,”
J. Comput. Phys.
,
144
(
1
), pp.
70
97
.10.1006/jcph.1998.5989
48.
Zeldovich
,
Y. B.
, and
Raizer
,
Y. P.
,
1966
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
, Vols. I and II,
Academic Press
,
New York
.
49.
Pomraning
,
G. C.
,
1973
,
The Equations of Radiation Hydrodynamics
,
Pergamon Press
,
New York
.
50.
Mihalas
,
D.
, and
Mihalas
,
B. W.
,
1984
,
Foundations of Radiation Hydrodynamics
,
Oxford University Press
,
New York
.
51.
Asllanaj
,
F.
,
Feldheim
,
V.
, and
Lybaert
,
P.
,
2007
, “
Solution of Radiative Heat Transfer in 2-D Geometries by a Modified Finite Volume Method Based on a Cell Vertex Scheme Using Unstructured Triangular Meshes
,”
Numer. Heat Transfer Part B
,
51
(
2
), pp.
97
119
.10.1080/10407790600762805
52.
Kim
,
M. Y.
,
Baek
,
S. W.
, and
Park
,
J. H.
,
2001
, “
Unstructured Finite Volume Method for Radiative Heat Transfer in a Complex Two-Dimensional Geometry With Obstacles
,”
Numer. Heat Transfer Part B
,
39
, pp.
617
635
.10.1080/10407790152034854
53.
Caramana
,
E. J.
, and
Shashkov
,
M. J.
,
1998
, “
Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures
,”
J. Comput. Phys.
,
142
(
2
), pp.
521
561
.10.1006/jcph.1998.5952
54.
Loubere
,
R.
,
Shashkov
,
M. J.
, and
Wendroff
,
B.
,
2008
, “
Volume Consistency in a Staggered Grid Lagrangian Hydrodynamics Scheme
,”
J. Comput. Phys.
,
227
, pp.
3731
3737
.10.1016/j.jcp.2008.01.006
55.
Lin
,
Z. W.
,
Jiang
,
S. E.
,
Wu
,
S. C.
, and
Kuang
,
L. Y.
,
2011
, “
A Local Rezoning and Remapping Method for Unstructured Mesh
,”
Comput. Phys. Commun.
,
182
(
6
), pp.
1361
1376
.10.1016/j.cpc.2010.11.034
56.
Lin
,
Z. W.
,
Jiang
,
S. E.
,
Zhang
,
L.
,
Kuang
,
L. Y.
, and
Li
,
H.
,
2018
, “
Maxis-A Rezoning and Remapping Code in Two Dimensional Cylindrical Geometry
,”
Comput. Phys. Commun.
,
227
, pp.
148
149
.10.1016/j.cpc.2018.02.006
57.
Campbell
,
J. C.
, and
Shashkov
,
M. J.
,
2001
, “
A Tensor Artificial Viscosity Using a Mimetic Finite Difference Algorithm
,”
J. Comput. Phys.
,
172
(
2
), pp.
739
765
.10.1006/jcph.2001.6856
58.
Vachal
,
P.
, and
Wendroff
,
B.
,
2014
, “
A Symmetry Preserving Dissipative Artificial Viscosity in an R-Z Staggered Lagrangian Discretization
,”
J. Comput. Phys.
,
258
, pp.
118
136
.10.1016/j.jcp.2013.10.036
59.
Kuropatenko
,
V. F.
,
1967
,
Difference Methods for Solutions of Problems of Mathematical Physics
,
American Mathematical Society
,
Providence, RI
, p.
116
.
60.
Lindl
,
J. D.
,
Amendt
,
P.
,
Berger
,
R. L.
,
Glendinning
,
S. G.
,
Glenzer
,
S. H.
,
Haan
,
S. W.
,
Kauffman
,
R. L.
,
Landen
,
O. L.
, and
Suter
,
L. J.
,
2004
, “
The Physics Basis for Ignition Using Indirect-Drive Targets on the National Ignition Facility
,”
Phys. Plasmas
,
11
(
2
), pp.
339
491
.10.1063/1.1578638
You do not currently have access to this content.