Abstract

The experimental and numerical investigations of the heat transfer of supercritical pressure n-decane flowing through a pipe at various rotational speeds, mass flow rates, heat fluxes, and pressures, are presented. This pipe is 2 mm in diameter, 200 mm in length, with a radius of 0.328 m, and is parallel to the rotating axis. The wall temperature was measured at four positions around the periphery of the pipe at each of the five selected cross section along the pipe's length. Maximum convective heat transfer was observed at the outer edge of the horizontal section, while its corresponding minimum was observed at the inner edge. The heat transfers at the two sides of the channel were observed to be similar. The density and pressure differences between the outer and inner edges increased at increasing rotating speeds. However, the temperature difference between the outer and inner edges decreased with increased rotational speed mainly because of the increase of secondary flows in the section. The section's average convective heat transfer coefficient increased with an increase in the rotational speed, and its value at 1000 rpm was approximately twice than that at static conditions. The phenomenon of oscillation was observed near the exit of the horizontal section, and was caused by the flow and considerable property changes near the pseudo critical temperature. A computational fluid dynamics (CFD) model was developed using the real gas thermal properties and was coupled with the heat transferred owing to fuel flow. The predicted fuel and wall temperatures were in good agreement with the experimental data. A new local Nusselt number correlation of the heat transfer of n-decane in a rotating horizontal section was proposed.

References

References
1.
Gascoin
,
N.
,
Abraham
,
G.
, and
Gillard
,
P.
,
2010
, “
Synthetic and Jet Fuels Pyrolysis for Cooling and Combustion Applications
,”
J. Anal. Appl. Pyrolysis
,
89
(
2
), pp.
294
306
.10.1016/j.jaap.2010.09.008
2.
Zhu
,
Y. H.
,
Peng
,
W.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2018
, “
Review on Active Thermal Protection and Its Heat Transfer for Airbreathing Hypersonic Vehicles
,”
Chin. J. Aeronaut.
,
31
(
10
), pp.
1929
1953
.10.1016/j.cja.2018.06.011
3.
Bruening
,
G. B.
, and
Chang
,
W. S.
,
1999
, “
Cooled Cooling Air Systems for Turbine Thermal Management
,”
ASME
Paper No. 99-GT-014.10.1115/99-GT-014
4.
Nirmalan
,
N. V.
,
Weaver
,
J. A.
, and
Hylton
,
L. D.
,
1998
, “
An Experimental Study of Turbine Vane Heat Transfer With Water–Air Cooling
,”
ASME J. Turbomach.
,
120
(
1
), pp.
50
60
.10.1115/1.2841387
5.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
,
Forced Convection Heat Transfer to Fluids at Supercritical Pressure, Turbulence Forced Convection in Channels and Bundles
, Vol.
2
,
Hemisphere
,
New York
, pp.
563
611
.
6.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
,
Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions, Turbulence Forced Convection in Channels and Bundles
, Vol.
2
,
Hemisphere
,
New York
, pp.
613
640
.
7.
McEligot
,
D. M.
,
Coon
,
C. W.
, and
Perkins
,
H. C.
,
1970
, “
Relaminarization in Tubes
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
431
433
.10.1016/0017-9310(70)90118-3
8.
Jiang
,
P. X.
,
Zhang
,
Y.
,
Xu
,
Y. J.
, and
Shi
,
R. F.
,
2008
, “
Experimental and Numerical Investigation of Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Tube at Low Reynolds Numbers
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
998
1011
.10.1016/j.ijthermalsci.2007.08.003
9.
Jiang
,
P. X.
,
Zhang
,
Y.
,
Zhao
,
C. R.
, and
Shi
,
R. F.
,
2008
, “
Convection Heat Transfer of CO2 at Supercritical Pressures in a Vertical Mini Tube at Relatively Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1628
1637
.10.1016/j.expthermflusci.2008.05.006
10.
Hua
,
X.
,
Wang
,
Y. Z.
, and
Meng
,
H.
,
2010
, “
A Numerical Study of Supercritical Forced Convective Heat Transfer of n-Heptane Inside a Horizontal Miniature Tube
,”
J. Supercrit. Fluids
,
52
(
1
), pp.
36
46
.10.1016/j.supflu.2009.12.003
11.
Zhu
,
J.
,
Tao
,
Z.
,
Deng
,
H.
,
Wang
,
K.
, and
Yu
,
X.
,
2015
, “
Numerical Investigation of Heat Transfer Characteristics and Flow Resistance of Kerosene RP-3 Under Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
91
, pp.
330
341
.10.1016/j.ijheatmasstransfer.2015.07.118
12.
Tao
,
Z.
,
Cheng
,
Z.
,
Zhu
,
J.
, and
Li
,
H.
,
2016
, “
Effect of Turbulence Models on Predicting Convective Heat Transfer to Hydrocarbon Fuel at Supercritical Pressure
,”
Chin. J. Aeronaut.
,
29
(
5
), pp.
1247
1261
.10.1016/j.cja.2016.08.007
13.
Zhu
,
Y. H.
,
Liu
,
B.
, and
Jiang
,
P. X.
,
2014
, “
Experimental and Numerical Investigations on n-Decane Thermal Cracking at Supercritical Pressures in a Vertical Tube
,”
Energy Fuels
,
28
(
1
), pp.
466
474
.10.1021/ef401924s
14.
Zhang
,
S.
,
Feng
,
Y.
,
Jiang
,
Y.
,
Qin
,
J.
,
Bao
,
W.
,
Han
,
J.
, and
Haidn
,
O. J.
,
2016
, “
Thermal Behavior in the Cracking Reaction Zone of Scramjet Cooling Channels at Different Channel Aspect Ratios
,”
Acta Astronaut.
,
127
(
1
), pp.
41
56
.10.1016/j.actaastro.2016.05.015
15.
Hines
,
W. S.
,
1962
, “
Pressure Oscillations Associated With Heat Transfer to Hydrocarbon Fluids at Supercritical Pressures and Temperatures
,”
ARS J.
,
32
(
3
), pp.
361
366
.10.2514/8.6020
16.
Hitch
,
B.
, and
Karpuk
,
M.
,
2013
, “
Experimental Investigation of Heat Transfer and Flow Instabilities in Supercritical Fuels
,”
Jt. Propul. Conf. Exhibit
,
27
(
4
), pp.
498
98
.10.2514/6.1997-3043
17.
Kakac
,
S.
, and
Bon
,
B.
,
2008
, “
A Review of Two-Phase Flow Dynamic Instabilities in Tube Boiling Systems
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
399
433
.10.1016/j.ijheatmasstransfer.2007.09.026
18.
Ruspini
,
L. C.
,
Marcel
,
C. P.
, and
Clausse
,
A.
,
2014
, “
Two-Phase Flow Instabilities: A Review
,”
Int. J. Heat Mass Transfer
,
71
, pp.
521
548
.10.1016/j.ijheatmasstransfer.2013.12.047
19.
DiMarco
,
P.
, and
Clausse
,
A.
,
1990
, “
Nodal Analysis of Instabilities in Boiling Channels
,”
Int. J. Heat Technol.
,
8
(
1
), pp.
125
141
.
20.
DiMarco
,
P.
,
Clausse
,
A.
, and
Lahey
,
R. T.
,
1991
, “
An Analysis of Nonlinear Instabilities in Boiling Systems
,”
Dyn. Stab. Syst.
,
6
(
3
), pp.
191
216
.10.1080/02681119108806116
21.
Ambrosini
,
W.
,
2009
, “
Discussion on the Stability of Heated Channels With Different Fluids at Supercritical Pressures
,”
Nucl. Eng. Des.
,
239
(
12
), pp.
2952
2963
.10.1016/j.nucengdes.2009.09.010
22.
Yan
,
J. J.
,
Zhu
,
Y. H.
,
Zhao
,
R.
,
Yan
,
S.
, and
Jiang
,
P. X.
,
2018
, “
Experimental Investigation of the Flow and Heat Transfer Instabilities in n-Decane at Supercritical Pressures in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
120
, pp.
987
996
.10.1016/j.ijheatmasstransfer.2017.12.057
23.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
(
4
), pp.
738
744
.10.1115/1.2929467
24.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
,
116
(
1
), pp.
113
123
.10.1115/1.2928265
25.
Gallo
,
M.
,
Astarita
,
T.
, and
Carlomagno
,
G. M.
,
2012
, “
Thermo-Fluid-Dynamic Analysis of the Flow in a Rotating Channel With a Sharp ‘U’ Turn
,”
Exp. Fluids
,
53
(
1
), pp.
201
219
.10.1007/s00348-012-1283-7
26.
Wei
,
K.
,
Tao
,
Z.
,
Wu
,
H.
,
Xu
,
G.
,
Li
,
H.
, and
You
,
R.
,
2017
, “
Interaction Between the Primary Flow Fields and the Secondary Flow Fields Under Rotating Condition
,”
Exp. Therm. Fluid Sci.
,
84
, pp.
217
230
.10.1016/j.expthermflusci.2017.02.010
27.
Yang
,
S. F.
,
Wu
,
H. W.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2017
, “
Heat Transfer in a Smooth Rotating Multi-Passage Channel With Hub Turning Vane and Trailing-Edge Slot Ejection
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1
15
.10.1016/j.ijheatmasstransfer.2017.01.059
28.
Tekriwal
,
P.
,
1994
, “
Heat Transfer Predictions in Rotating Radial Smooth Channel: Comparative Study of kε Models With Wall Function and Low-Re Model
,”
ASME
Paper No. 94-GT-196.10.1115/94-GT-196
29.
Dutta
,
S.
,
Andrews
,
M. J.
, and
Han
,
J. C.
,
1996
, “
Prediction of Turbulent Heat Transfer in Rotating Smooth Square Ducts
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2505
2514
.10.1016/0017-9310(95)00319-3
30.
Zhu
,
J.
,
Tao
,
Z.
, and
Nie
,
C.
,
2011
, “
Computational Research on Rotating Channel by a Modified Anisotropic Turbulence Model
,”
J. Therm. Sci.
,
20
(
5
), pp.
385
393
.10.1007/s11630-011-0485-2
31.
Jiang
,
P. X.
,
Lu
,
Z. L.
,
Guo
,
Y. X.
, and
Zhu
,
Y. H.
,
2019
, “
Experimental Investigation of Convective Heat Transfer of Hydrocarbon Fuels at Supercritical Pressures Within Rotating Centrifugal Channel
,”
Appl. Therm. Eng.
,
147
, pp.
101
112
.10.1016/j.applthermaleng.2018.10.039
32.
ANSYS, Inc.,
2010
,
ANSYS 13 FLUENT User's Guide
,
ANSYS
,
Canonsburg, PA
.
33.
Liu
,
B.
,
Zhu
,
Y. H.
,
Yan
,
J. J.
,
Lei
,
Y.
,
Zhang
,
B.
, and
Jiang
,
P. X.
,
2015
, “
Experimental Investigation of Convection Heat Transfer of n-Decane at Supercritical Pressures in Small Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
91
, pp.
734
746
.10.1016/j.ijheatmasstransfer.2015.07.006
34.
Gnielinski
,
V.
,
1976
, “
New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
You do not currently have access to this content.