Gallium nitride (GaN) is an attractive material for manufacturing light emitting diodes and other electronic devices due to its wide band-gap and superb optoelectronic performance. The quality of GaN thin film determines the reliability and durability of these devices. Metal-organic chemical vapor deposition (MOCVD) is a common technique used to fabricate high-quality GaN thin films. In this paper, GaN growth rate and uniformity in a vertical rotating disk MOCVD reactor are investigated on the basis of a three-dimensional computational fluid dynamics (CFD) model. GaN growth rate is investigated under the influence of reactor pressure, precursor concentration ratio, and composition of the carrier gas mixture. The numerical simulation shows that the carrier gas mixture and the reactor pressure have significant effects on growth rate and uniformity of GaN thin films. It is also found that an appropriate mixture of N2 and H2 may be employed as the carrier gas to improve the flow field characteristic in the reactor. This results in an improved crystal growth of GaN thin films.

References

References
1.
Nakamura
,
S.
, and
Krames
,
M. R.
,
2013
, “
History of Gallium-Nitride-Based Light-Emitting Diodes for Illumination
,”
Proc. IEEE
,
101
(
10
), pp.
2211
2220
.
2.
Nakamura
,
S.
,
Senoh
,
M.
,
Iwasa
,
N.
, and
Nagahama
,
S.
,
1995
, “
High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes With Quantum Well Structures
,”
Jpn. J. Appl. Phys.
,
34
(
7A
), pp.
L797
L799
.
3.
Hu
,
S.
,
Liu
,
S.
,
Zhang
,
Z.
,
Yan
,
H.
,
Gan
,
Z.
, and
Fang
,
H.
,
2015
, “
A Novel MOCVD Reactor for Growth of High-Quality GaN-Related LED Layers
,”
J. Cryst. Growth
,
415
, pp.
72
77
.
4.
Watson
,
I. M.
,
2013
, “
Metal Organic Vapour Phase Epitaxy of AlN, GaN, InN and Their Alloys: A Key Chemical Technology for Advanced Device Applications
,”
Coord. Chem. Rev.
,
257
(
13–14
), pp.
2120
2141
.
5.
Huang
,
W.-C.
,
Chu
,
C.-M.
,
Wong
,
Y.-Y.
,
Chen
,
K.-W.
,
Lin
,
Y.-K.
,
Wu
,
C.-H.
,
Lee
,
W.-I.
, and
Chang
,
E.-Y.
,
2016
, “
Investigations of GaN Growth on the Sapphire Substrate by MOCVD Method With Different AlN Buffer Deposition Temperatures
,”
Mater. Sci. Semicond. Process.
,
45
, pp.
1
8
.
6.
Winters
,
W. S.
,
Evans
,
G. H.
, and
Greif
,
R.
,
1997
, “
Mixed Binary Convection in a Rotating Disk Chemical Vapor Deposition Reactor
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
737
744
.
7.
I
,
D.
,
Kremer
,
A. M.
,
McKenna
,
D. R.
, and
Jensen
,
K. F.
,
1987
, “
Complex Flow Phenomena in Vertical MOCVD Reactors: Effects on Deposition Uniformity and Interface Abruptness
,”
J. Cryst. Growth
,
85
(
1–2
), pp.
154
164
.
8.
Meng
,
J.
, and
Jaluria
,
Y.
,
2013
, “
Numerical Simulation of GaN Growth in a Metalorganic Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
135
(
6
), p.
061006
.
9.
Hirako
,
A.
,
Kusakabe
,
K.
, and
Ohkawa
,
K.
,
2005
, “
Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2 System: A Computational Fluid Dynamics Simulation Study
,”
Jpn. J. Appl. Phys.
,
44
(
2
), p.
874
.
10.
Soong
,
C. Y.
,
Chyuan
,
C. H.
, and
Tzong
,
R. Y.
,
1998
, “
Thermo-Flow Structure and Epitaxial Uniformity in Large-Scale Metalorganic Chemical Vapor Deposition Reactors With Rotating Susceptor and Inlet Flow Control
,”
Jpn. J. Appl. Phys.
,
37
(
10
), pp.
5823
5834
.
11.
Sengupta
,
D.
,
Mazumder
,
S.
,
Kuykendall
,
W.
, and
Lowry
,
S. A.
,
2005
, “
Combined Ab Initio Quantum Chemistry and Computational Fluid Dynamics Calculations for Prediction of Gallium Nitride Growth
,”
J. Cryst. Growth
,
279
(
3–4
), pp.
369
382
.
12.
Hu
,
C. K.
,
Chen
,
C. J.
, and
Wei
,
T. C.
,
2016
, “
A Simplified and Universal Mechanism Model for Prediction of Gallium Nitride Thin Film Growth Through Numerical Analysis
,”
IJNTR
,
2
(
7
), pp.
7
15
.https://www.neliti.com/publications/263473/a-simplified-and-universal-mechanism-model-for-prediction-of-gallium-nitride-thi
13.
Theodoropoulos
,
C.
,
Mountziaris
,
T. J.
,
Moffat
,
H. K.
, and
Han
,
J.
,
2000
, “
Design of Gas Inlets for the Growth of Gallium Nitride by Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
217
(
1–2
), pp.
65
81
.
14.
Kayser
,
R.
, and
Rumble
,
J.
,
1998
,
NIST-JANAF Thermochemical Tables
,
ACS & AIP
,
College Park, MD
.
15.
Moscatelli
,
D.
, and
Cavallotti
,
C.
,
2007
,
A Kinetic Study of the MOCVD of GaN
,
NSTI
,
Santa Clara, CA
, pp.
536
539
.
16.
Sudharshan
,
T. S.
, and
Park
,
J.-H.
,
2001
,
Chemical Vapor Deposition
,
ASM International
,
Materials Park, OH
.
17.
ANSYS
,
2016
, “ANSYS Fluent User's Guide,”
ANSYS
,
Canonsburg, PA
.
18.
Schön
,
O.
,
Schineller
,
B.
,
Heuken
,
M.
, and
Beccard
,
R.
,
1998
, “
Comparison of Hydrogen and Nitrogen as Carrier Gas for MOVPE Growth of GaN
,”
J. Cryst. Growth
,
189–190
, pp.
335
339
.
19.
Pearton
,
S. J.
,
Shul
,
R. J.
,
Wilson
,
R. G.
,
Ren
,
F.
,
Zavada
,
J. M.
,
Abernathy
,
C. R.
,
Vartuli
,
C. B.
,
Lee
,
J. W.
,
Mileham
,
J. R.
, and
Mackenzie
,
J. D.
,
1996
, “
The Incorporation of Hydrogen Nminto III-V Nitrides During Processing
,”
J. Electron. Mater.
,
25
(
5
), pp.
845
849
.
20.
Jian-Li
,
Z.
,
Jun-Lin
,
L.
,
Yong
,
P.
,
Wen-Qing
,
F.
,
Meng
,
Z.
, and
Feng-Yi
,
J.
,
2014
, “
Effects of Carrier Gas on Carbon Incorporation in GaN
,”
Chin. Phys. Lett.
,
31
(
3
), p.
037102
.
21.
Hu
,
C.-K.
,
Chen
,
C.-J.
,
Wei
,
T.-C.
,
Li
,
T. T.
,
Wang
,
C.-C.
, and
Huang
,
C.-Y.
,
2017
, “
Investigation of a Simplified Mechanism Model for Prediction of Gallium Nitride Thin Film Growth Through Numerical Analysis
,”
Coatings
,
7
(
3
), pp.
1
23
.
You do not currently have access to this content.