Abstract

The design of Ranque–Hilsch vortex tube (RHVT) seems to be interesting for refrigeration and air conditioning purposes in industry. Improving thermal efficiency of the vortex tubes could increase the operability of these innovative facilities for a wider heat and cooling demand to this end; it is of an interest to understand the physical phenomena of thermal and flow patterns inside a vortex tube. In this work, the flow phenomena and the thermal energy transfer in RHVT are studied for three RHVT: straight, divergent, and convergent vortex tubes. A three-dimensional numerical analysis of swirling or vortex flow is performed, verified, and validated against previous experimental and numerical data reported in literature. The flow field and the temperature separation inside an RHVT for different configuration of straight, five angles of divergent hot tube (1 deg, 2 deg, 3 deg, 4 deg, and 6 deg) and five angle of convergent hot tube (0.5 deg, 0.8 deg, 1 deg, 1.5 deg, and 2 deg) are investigated. The thermal performance for all investigated RHVTs configuration is determined and quantitatively assessed via visualizing the stream lines for all three scenarios.

References

References
1.
Ranque
,
G.
,
1933
, “
Expériencesd Sur la Detente Giratoire Avec Productions Simultanes D'un Echappment D'air Chand et D'un Echappment D'air Froid
,”
J. Phys. Radium
,
4
(3), pp.
112
114
.
2.
Hilsch
,
R.
,
1946
, “
Die Expansion Von Gasen im Zentrifugalfeld Als Kälteprozess
,”
Z. Naturforsch. A
,
1
(
4
), pp.
208
214
.
3.
Ranque
,
G.
,
1933
, “
Experiences Sur la D'etente Giratoire Avec Productions Simultan\Ees D'un Echappement D'air Chaud et D'un Echappement D'air Froid
,”
J. Phys. Radium
,
4
(
7
), pp.
112
114
.
4.
Kassner
,
R.
, and
Knoernschild
,
E.
,
1948
, “
Friction Laws and Energy Transfer in Circular Flow—Part 1: The Law of Shear Stresses in Circular Flow; Part 2: Energy Transfer in Circular Flow and Possible Applications (Explanation of the Hilsch or Ranque Effect)
,”
Air Materiel Command Wright-Patterson AFB, OH.
5.
Elser
,
K.
, and
Hoch
,
M.
,
1951
, “
Das Verhalten Verschiedener Gase Und Die Trennung Von Gasgemischen in Einem Wirbelrohr
,”
Z. Naturforsch. A
,
6
(
1
), pp.
25
31
.
6.
Deissler
,
R.
, and
Perlmutter
,
M.
,
1960
, “
Analysis of the Flow and Energy Separation in a Turbulent Vortex
,”
Int. J. Heat Mass Transfer
,
1
(
2–3
), pp.
173
191
.10.1016/0017-9310(60)90021-1
7.
Reynolds
,
A. J.
,
1961
, “
Energy Flows in a Vortex Tube
,”
Z. Angew. Math. Phys.
,
12
(
4
), pp.
343
357
.10.1007/BF01591284
8.
Erdélyi
,
I.
,
1962
, “
Wirkung Des Zentrifugalkraftfeldes Auf Den Wärmezustand Der Gase, Erklärung Der Ranque-Erscheinung
,”
Forsch. Ingenieurwes.
,
28
(
6
), pp.
181
186
.
9.
Sibulkin
,
M.
,
1962
, “
Unsteady, Viscous, Circular Flow—Part 3: Application to the Ranque-Hilsch Vortex Tube
,”
J. Fluid Mech.
,
12
(
2
), pp.
269
293
.10.1017/S0022112062000191
10.
Gulyaev
,
A.
,
1965
, “
Ranque Effect at Low Temperatures
,”
J. Eng. Phys. Thermophys.
,
9
(
3
), pp.
242
244
.10.1007/BF00828341
11.
Bruun
,
H.
,
1969
, “
Experimental Investigation of the Energy Separation in Vortex Tubes
,”
J. Mech. Eng. Sci.
,
11
(
6
), pp.
567
582
.10.1243/JMES_JOUR_1969_011_070_02
12.
Linderstrøm-Lang
,
C.
,
1971
, “
The Three-Dimensional Distributions of Tangential Velocity and Total-Temperature in Vortex Tubes
,”
J. Fluid Mech.
,
45
(
1
), pp.
161
187
.10.1017/S0022112071003057
13.
Takahama
,
H.
, and
Yokosawa
,
H.
,
1981
, “Energy Separation in Vortex Tubes With a Divergent Chamber,“
ASME J. Heat Transfer
,
103
(2), pp. 196–203. 10.1115/1.3244441
14.
Kurosaka
,
M.
,
1982
, “
Acoustic Streaming in Swirling Flow and the Ranque–Hilsch (Vortex-Tube) Effect
,”
J. Fluid Mech.
,
124
(
1
), pp.
139
172
.10.1017/S0022112082002444
15.
Stephan
,
K.
,
Lin
,
S.
,
Durst
,
M.
,
Huang
,
F.
, and
Seher
,
D.
,
1983
, “
An Investigation of Energy Separation in a Vortex Tube
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
341
348
.10.1016/0017-9310(83)90038-8
16.
Stephan
,
K.
,
Lin
,
S.
,
Durst
,
M.
,
Huang
,
F.
, and
Seher
,
D.
,
1984
, “
A Similarity Relation for Energy Separation in a Vortex Tube
,”
Int. J. Heat Mass Transfer
,
27
(
6
), pp.
911
920
.10.1016/0017-9310(84)90012-7
17.
Eckert
,
E.
,
1986
, “
Energy Separation in Fluid Streams
,”
Int. Commun. Heat Mass Transfer
,
13
(
2
), pp.
127
143
.10.1016/0735-1933(86)90053-9
18.
Balmer
,
R.
,
1988
, “
Pressure Driven Ranque Hilsch Temperature Separation in Liquids
,”
ASME J. Fluids Eng.
,
110
(
2
), pp.
161
164
.10.1115/1.3243529
19.
Ahlborn
,
B.
,
Keller
,
J.
,
Staudt
,
R.
,
Treitz
,
G.
, and
Rebhan
,
E.
,
1994
, “
Limits of Temperature Separation in a Vortex Tube
,”
J. Phys. D: Appl. Phys.
,
27
(
3
), pp.
480
488
.10.1088/0022-3727/27/3/009
20.
Ahlborn
,
B.
, and
Groves
,
S.
,
1997
, “
Secondary Flow in a Vortex Tube
,”
Fluid Dyn. Res.
,
21
(
2
), pp.
73
86
.10.1016/S0169-5983(97)00003-8
21.
Gutsol
,
A.
,
1997
, “
The Ranque Effect
,”
Phys.-Usp.
,
40
(
6
), pp.
639
658
.10.1070/PU1997v040n06ABEH000248
22.
Gutsol
,
A.
, and
Bakken
,
J.
,
1998
, “
A New Vortex Method of Plasma Insulation and Explanation of the Ranque Effect
,”
J. Phys. D: Appl. Phys.
,
31
(
6
), pp.
704
711
.10.1088/0022-3727/31/6/018
23.
Fröhlingsdorf
,
W.
, and
Unger
,
H.
,
1999
, “
Numerical Investigations of the Compressible Flow and the Energy Separation in the Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
415
422
.10.1016/S0017-9310(98)00191-4
24.
Mischner
,
J.
, and
Bespalov
,
V.
,
2002
, “
Zur Entropieproduktion im Ranque–Hilsch–Rohr
,”
Forsch. Ingenieurwes.
,
67
(
1
), pp.
1
10
.
25.
Shannak
,
B. A.
,
2004
, “
Temperature Separation and Friction Losses in Vortex Tube
,”
Heat Mass Transfer
,
40
(
10
), pp.
779
785
.10.1007/s00231-003-0485-1
26.
Aljuwayhel
,
N.
,
Nellis
,
G.
, and
Klein
,
S.
,
2005
, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
,
28
(
3
), pp.
442
450
.10.1016/j.ijrefrig.2004.04.004
27.
Behera
,
U.
,
Paul
,
P.
,
Kasthurirengan
,
S.
,
Karunanithi
,
R.
,
Ram
,
S.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2005
, “
CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
48
(
10
), pp.
1961
1973
.10.1016/j.ijheatmasstransfer.2004.12.046
28.
Gao
,
C.
,
Bosschaart
,
K.
,
Zeegers
,
J.
, and
De Waele
,
A.
,
2005
, “
Experimental Study on a Simple Ranque–Hilsch Vortex Tube
,”
Cryogenics
,
45
(
3
), pp.
173
183
.10.1016/j.cryogenics.2004.09.004
29.
Piralishvili
,
S. A.
, and
Fuzeeva
,
A.
,
2005
, “
Hydraulic Characteristics of Ranque-Hilsch Energy Separators
,”
High Temp.
,
43
(
6
), pp.
900
907
.10.1007/s10740-005-0137-x
30.
Piralishvili
,
S. A.
, and
Fuzeeva
,
A.
,
2006
, “
Similarity of the Energy-Separation Process in Vortex Ranque Tubes
,”
J. Eng. Phys. Thermophys.
,
79
(
1
), pp.
27
32
.10.1007/s10891-006-0062-9
31.
Skye
,
H.
,
Nellis
,
G.
, and
Klein
,
S.
,
2006
, “
Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube
,”
Int. J. Refrig.
,
29
(
1
), pp.
71
80
.10.1016/j.ijrefrig.2005.05.004
32.
Sohn
,
C. H.
,
Kim
,
C. S.
,
Jung
,
U. H.
, and
Gowda
,
B. H. L. L.
,
2006
, “
Experimental and Numerical Studies in a Vortex Tube
,”
J. Mech. Sci. Technol.
,
20
(
3
), pp.
418
425
.10.1007/BF02917525
33.
Aydın
,
O.
, and
Baki
,
M.
,
2006
, “
An Experimental Study on the Design Parameters of a Counterflow Vortex Tube
,”
Energy
,
31
(
14
), pp.
2763
2772
.10.1016/j.energy.2005.11.017
34.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2007
, “
Numerical Investigation of the Thermal Separation in a Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
821
832
.10.1016/j.ijheatmasstransfer.2006.08.018
35.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2008
, “
Review of Ranque–Hilsch Effects in Vortex Tubes
,”
Renewable Sustainable Energy Rev.
,
12
(
7
), pp.
1822
1842
.10.1016/j.rser.2007.03.006
36.
Dincer
,
K.
,
Baskaya
,
S.
, and
Uysal
,
B.
,
2007
, “
Experimental Investigation of the Effects of Length to Diameter Ratio and Nozzle Number on the Performance of Counter Flow Ranque–Hilsch Vortex Tubes
,”
Heat Mass Transfer
,
44
(
3
), pp.
367
373
.10.1007/s00231-007-0241-z
37.
She
,
Z.-S.
,
Jackson
,
E.
, and
Orszag
,
S. A.
,
1990
, “
Intermittent Vortex Structures in Homogeneous Isotropic Turbulence
,”
Nature
,
344
(
6263
), pp.
226
228
.10.1038/344226a0
38.
Xue
,
Y.
, and
Arjomandi
,
M.
,
2008
, “
The Effect of Vortex Angle on the Efficiency of the Ranque–Hilsch Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
54
57
.10.1016/j.expthermflusci.2008.07.001
39.
Yilmaz
,
M.
,
Kaya
,
M.
,
Karagoz
,
S.
, and
Erdogan
,
S.
,
2009
, “
A Review on Design Criteria for Vortex Tubes
,”
Heat Mass Transfer
,
45
(
5
), pp.
613
632
.10.1007/s00231-008-0447-8
40.
Secchiaroli
,
A.
,
Ricci
,
R.
,
Montelpare
,
S.
, and
D'Alessandro
,
V.
,
2009
, “
Numerical Simulation of Turbulent Flow in a Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5496
5511
.10.1016/j.ijheatmasstransfer.2009.05.031
41.
Zin
,
K.
,
Hansske
,
A.
, and
Ziegler
,
F.
,
2010
, “
Modeling and Optimization of the Vortex Tube With Computational Fluid Dynamic Analysis
,”
Energy Res. J.
,
1
(
2
), pp.
193
196
.10.3844/erjsp.2010.193.196
42.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2010
, “
A Critical Review of Temperature Separation in a Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1367
1374
.10.1016/j.expthermflusci.2010.06.010
43.
Liew
,
R.
,
Zeegers
,
J.
,
Kuerten
,
J.
, and
Michałek
,
W.
,
2012
, “
Temperature, Pressure and Velocity Measurements on the Ranque-Hilsch Vortex Tube
,”
J Phys.: Conf. Ser.
,
395
, p.
012066
.10.1088/1742-6596/395/1/012066
44.
Liew
,
R.
,
Zeegers
,
J.
,
Kuerten
,
J.
, and
Michalek
,
W.
,
2012
, “
Maxwell's Demon in the Ranque-Hilsch Vortex Tube
,”
Phys. Rev. Lett.
,
109
(
5
), p.
054503
.10.1103/PhysRevLett.109.054503
45.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2013
, “
Experimental Study of the Thermal Separation in a Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
175
182
.10.1016/j.expthermflusci.2012.12.009
46.
Liu
,
X.
, and
Liu
,
Z.
,
2014
, “
Investigation of the Energy Separation Effect and Flow Mechanism Inside a Vortex Tube
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
494
506
.10.1016/j.applthermaleng.2014.03.071
47.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2014
, “
Energy Analysis Within a Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
139
145
.10.1016/j.expthermflusci.2013.09.004
48.
Kobiela
,
B.
,
2014
, “
Wärmeübertragung in einer Zyklonkühlkammer einer Gasturbinenschaufel
,” Verlag Dr. Hut, Munich, Germany.
49.
Thakare
,
H. R.
,
Monde
,
A.
, and
Parekh
,
A. D.
,
2015
, “
Experimental, Computational and Optimization Studies of Temperature Separation and Flow Physics of Vortex Tube: A Review
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1043
1071
.10.1016/j.rser.2015.07.198
50.
Manimaran
,
R.
,
2016
, “
Computational Analysis of Energy Separation in a Counter-Flow Vortex Tube Based on Inlet Shape and Aspect Ratio
,”
Energy
,
107
, pp.
17
28
.10.1016/j.energy.2016.04.005
51.
Takahama
,
H.
,
1965
, “
Studies on Vortex Tubes: (1) Experiments on Efficiency of Energy Separation: (2) on Profiles of Velocity and Temperature
,”
Bull. JSME
,
8
(
31
), pp.
433
440
.10.1299/jsme1958.8.433
52.
Takahama
,
H.
, and
Yokosawa
,
H.
,
1981
,
An Experimental Study of the Vortex Tube-Where the Vortex Chamber Includes a Divergent Tube
, Vol.
33
,
Nagoya University Faculty Engineering Memoirs
, Nagoya, Japan, pp.
195
208
.
53.
Saidi
,
M.
, and
Valipour
,
M.
,
2003
, “
Experimental Modeling of Vortex Tube Refrigerator
,”
Appl. Therm. Eng.
,
23
(
15
), pp.
1971
1980
.10.1016/S1359-4311(03)00146-7
54.
Nimbalkar
,
S. U.
, and
Muller
,
M. R.
,
2009
, “
An Experimental Investigation of the Optimum Geometry for the Cold End Orifice of a Vortex Tube
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
509
514
.10.1016/j.applthermaleng.2008.03.032
55.
Chang
,
K.
,
Li
,
Q.
,
Zhou
,
G.
, and
Li
,
Q.
,
2011
, “
Experimental Investigation of Vortex Tube Refrigerator With a Divergent Hot Tube
,”
Int. J. Refrig.
,
34
(
1
), pp.
322
327
.10.1016/j.ijrefrig.2010.09.001
56.
Uluer
,
O.
,
Kırmacı
,
V.
, and
Ataş
,
Ş.
,
2009
, “
Using the Artificial Neural Network Model for Modeling the Performance of the Counter Flow Vortex Tube
,”
Expert Syst. Appl.
,
36
(
10
), pp.
12256
12263
.10.1016/j.eswa.2009.04.061
57.
Korkmaz
,
M. E.
,
Gümüşel
,
L.
, and
Markal
,
B.
,
2012
, “
Using Artificial Neural Network for Predicting Performance of the Ranque–Hilsch Vortex Tube
,”
Int. J. Refrig.
,
35
(
6
), pp.
1690
1696
.10.1016/j.ijrefrig.2012.04.013
58.
Khazaei
,
H.
,
Teymourtash
,
A. R.
, and
Malek-Jafarian
,
M.
,
2012
, “
Effects of Gas Properties and Geometrical Parameters on Performance of a Vortex Tube
,”
Sci. Iran.
,
19
(
3
), pp.
454
462
.10.1016/j.scient.2012.03.003
59.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2011
, “
Visualization of the Flow Structure in a Vortex Tube
,”
Exp. Therm. Fluid Sci.
,
35
(
8
), pp.
1514
1521
.10.1016/j.expthermflusci.2011.07.001
60.
Xue
,
Y.
,
Arjomandi
,
M.
, and
Kelso
,
R.
,
2013
, “
The Working Principle of a Vortex Tube
,”
Int. J. Refrig.
,
36
(
6
), pp.
1730
1740
.10.1016/j.ijrefrig.2013.04.016
61.
Dos Santos
,
E.
,
Marques
,
C.
,
Stanescu
,
G.
,
Isoldi
,
L.
, and
Rocha
,
L.
,
2013
, “
Constructal Design of Vortex Tubes
,”
Constructal Law and the Unifying Principle of Design
,
Springer
, Berlin, pp.
259
273
.
62.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2008
, “
Numerical Simulation of Flow Field and Temperature Separation in a Vortex Tube
,”
Int. Commun. Heat Mass Transfer
,
35
(
8
), pp.
937
947
.10.1016/j.icheatmasstransfer.2008.04.010
63.
Bianco
,
V.
,
Khait
,
A.
,
Noskov
,
A.
, and
Alekhin
,
V.
,
2016
, “
A Comparison of the Application of RSM and LES Turbulence Models in the Numerical Simulation of Thermal and Flow Patterns in a Double-Circuit Ranque-Hilsch Vortex Tube
,”
Appl. Therm. Eng.
,
106
, pp.
1244
1256
.10.1016/j.applthermaleng.2016.06.095
64.
Ansys Inc.,
2011
,
14.0 Theory Guide
, Vol.
390
,
ANSYS
, Canonsburg, PA, p.
1
.
65.
Leonard
,
B.
,
1997
, “
Bounded Higher-Order Upwind Multidimensional Finite-Volume Convection-Diffusion Algorithms
,” Advances in Numerical Heat Transfer, Vol. 1, Taylor & Francis, Washington, DC, Chap. 1
You do not currently have access to this content.