Heat transfer and pressure drop have been experimentally investigated in an equilateral triangular channel (Dh=1.83cm), which can be used to simulate the internal cooling passage near the leading edge of a gas turbine blade. Three different rib configurations (45 deg, inverted 45 deg, and 90 deg) were tested at four different Reynolds numbers (10,000–40,000), each with five different rotational speeds (0–400 rpm). The rib pitch-to-height (P/e) ratio is 8 and the height-to-hydraulic diameter (e/Dh) ratio is 0.087 for every rib configuration. The rotation number and buoyancy parameter achieved in this study were 0–0.58 and 0–2.3, respectively. Both the rotation number and buoyancy parameter have been correlated with predict the rotational heat transfer in the ribbed equilateral triangular channel. For the stationary condition, staggered 45 deg angled ribs show the highest heat transfer enhancement. However, staggered 45 deg angled ribs and 90 deg ribs have the higher comparable heat transfer enhancement at rotating condition near the blade leading edge region.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Han
,
J. C.
, 1984, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughened Walls
,”
ASME J. Heat Transfer
0022-1481,
106
, pp.
774
781
.
3.
Han
,
J. C.
, 1988, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
321
328
.
4.
Han
,
J. C.
, and
Zhang
,
P.
, 1991, “
Effect of Rib-Angle Orientation on Local Mass Transfer Distribution in a Three-Pass Rib-Roughened Channel
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
123
130
.
5.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Ou
,
S.
, 1992, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
11
), pp.
2891
2903
.
6.
Lowdermilk
,
W. H.
,
Weiland
,
W. F.
, and
Livingood
,
J. N. B.
, 1954, “
Measurement of Heat Transfer and Friction Coefficients for Flow of Air in Noncircular Ducts at High Surface Temperatures
,” NACA RM E53J07.
7.
Metzger
,
D. E.
, and
Vedula
,
R. P.
, 1987, “
Heat Transfer in Triangular Channels With Angled Roughness Ribs on Two Walls
,”
Exp. Heat Transfer
0891-6152,
1
, pp.
31
44
.
8.
Zhang
,
Y. M.
,
Gu
,
W. Z.
, and
Han
,
J. C.
, 1994, “
Augmented Heat Transfer in Triangular Ducts With Full and Partial Ribbed Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
8
(
3
), pp.
574
579
.
9.
Haasenritter
,
A.
, and
Weigand
,
B.
, 2001, “
Heat Transfer in Triangular Rib-Roughened Channels
,” ASME Paper No. NHTC 2001-20245.
10.
Ahn
,
S. W.
, and
Son
,
K. P.
, 2002, “
Heat Transfer and Pressure Drop in the Roughened Equilateral Triangular Duct
,”
Int. Commun. Heat Mass Transfer
0735-1933,
29
, pp.
479
488
.
11.
Amro
,
M.
,
Weigand
,
B.
,
Poser
,
R.
, and
Schnieder
,
M.
, 2007, “
An Experimental Investigation of the Heat Transfer in a Ribbed Triangular Cooling Channel
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
491
500
.
12.
Taslim
,
M. E.
,
Li
,
T.
, and
Spring
,
S. D.
, 1998, “
Measurements of Heat Transfer Coefficients and Friction Factors in Passages Rib-Roughened on All Walls
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
564
570
.
13.
Takeishi
,
K.
,
Kitamura
,
T.
,
Matsuura
,
M.
, and
Shimizu
,
K.
, 2003, “
Heat Transfer Characteristic of a Triangular Channel With Turbulence Promoter
,”
Proceedings of the International Gas Turbine Congress
, Tokyo, Japan, Paper No. TS-080.
14.
Dutta
,
S.
,
Han
,
J. C.
, and
Lee
,
C. P.
, 1995, “
Experimental Heat Transfer in a Rotating Triangular Duct: Effect of Model Orientation
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
1058
1061
.
15.
Lee
,
D. H.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2006, “
Heat Transfer Measurements in a Rotating Equilateral Triangular Channel With Various Rib Arrangements
,” ASME Paper No. GT 2006-90973.
16.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
, 1991, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
42
51
.
17.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
, 1991, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
321
330
.
18.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
113
123
.
19.
Zhou
,
F.
,
Lagrone
,
J.
, and
Acharya
,
S.
, 2004, “
Internal Cooling in 4:1 AR Passages at High Rotation Numbers
,” ASME Paper No. GT 2004-53501.
20.
Liou
,
T. M.
,
Chang
,
S. W.
,
Hung
,
J. H.
, and
Chiou
,
S. F.
, 2007, “
High Rotation Number Heat Transfer of 45° Rib-Roughened Rectangular Duct With Two Channel Orientations
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4063
4078
.
21.
Liu
,
Y. H.
,
Huh
,
M.
,
Han
,
J. C.
, and
Chopra
,
S.
, 2008, “
Heat Transfer in a Two-Pass Rectangular Channel (AR=1:4) Under High Rotation Numbers
,”
ASME J. Heat Transfer
0022-1481,
130
(
8
), p.
081701
.
22.
Wright
,
L. M.
,
Liu
,
Y. H.
,
Han
,
J. -C.
, and
Chopra
,
S.
, 2008, “
Heat Transfer in a Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers
,”
ASME J. Heat Transfer
0022-1481,
130
(
7
), p.
071701
.
23.
Liu
,
Y. H.
,
Huh
,
M.
,
Rhee
,
D. H.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2008, “
Heat Transfer in Leading Edge, Triangular Shaped Cooling Channels With Angled Ribs Under High Rotation Numbers
,” ASME Paper No. GT-2008-50344.
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.