The effect of large density differences on film cooling effectiveness was investigated through the heat-mass transfer analogy. Experiments were performed in a wind tunnel where one of the plane walls was provided with a porous strip or a row of holes with three-diameter lateral spacing and inclined 35 deg into the main stream. Helium, CO2, or refrigerant F-12, was mixed with air either in small concentrations to approach a constant property situation or in larger concentration to produce a large density difference and injected through the porous strip or the row of holes into the mainstream. The resulting local gas concentrations were measured along the wall. The density ratio of secondary to mainstream fluid was varied between 0.75 and 4.17 for both injection systems. Local film effectiveness values were obtained at a number of positions downstream of injection and at different lateral positions. From these lateral average values could also be calculated. The following results were obtained. The heat mass-transfer analogy was verified for injection through the porous strip or through holes at conditions approaching a constant property situation. Neither the Schmidt number, nor the density ratio affects the film effectiveness for injection through a porous strip. The density ratio has a strong effect on the film effectiveness for injection through holes. The film effectiveness for injection through holes has a maximum value for a velocity ratio (injection to free stream) between 0.4 and 0.6. The center-line effectiveness increases somewhat with a decreasing ratio of boundary layer thickness to injection tube diameter.

This content is only available via PDF.
You do not currently have access to this content.