A new way of presenting the heat transfer data is shown. This leads to a dimensionless performance plot between a “heat transfer performance factor” and a “pumping power factor” with a nondimensional “flow length between major boundary layer disturbances” as a varying parameter. This approach leads to the possibility of approximately presenting all surface geometries on a single “idealized” performance plot, the nondimensional “flow length” being a geometrical characteristic of each surface. The method can be used to predict approximately the heat transfer performance characteristics of a new, untested surface. The plot permits the rapid assessment and comparison of various heat transfer geometries for a given application. The performance plot is valid only in the turbulent flow regime. The method will prove invaluable in optimizing a design accounting for space limitations, economic restraints, and system considerations such as pumping power and effectiveness tradeoffs.

This content is only available via PDF.
You do not currently have access to this content.