Heat pipes have been proposed for use in environments where there are strong magnetic fields such as in controlled fusion reactors. The presence of a magnetic field can influence the performance of a heat pipe significantly, depending on the heat-pipe geometry, its orientation in the magnetic field, the heat-pipe materials and fluid properties, as well as the magnetic-field strength. A liquid-metal heat pipe, specifically designed to operate in a magnetic field, will employ a compound wick structure with the optimum liquid-flow passage size larger and the vapor flow passage proportionately smaller than for the no-magnetic-field design. The basic conclusion is that the presence of a magnetic field always results in a lower maximum heat-flux capability, but the detrimental effects of the magnetic field can be greatly reduced by using a heat-pipe geometry optimized for operation in the specific magnetic-field environment.

This content is only available via PDF.
You do not currently have access to this content.