In an attempt to determine the heat transfer rates in forced flow normal to a heated cylinder and to provide some insight into the mechanisms in heat transfer in the critical region, heat transfer rates have been measured for both free and forced flow of supercritical carbon dioxide normal to a horizontal heated cylinder. The 0.006-in-dia cylinder was held at various constant temperatures by a feedback circuit. The effects of bulk fluid temperature, bulk fluid pressure, and surface temperature were studied for a range of bulk fluid temperatures and pressures from 0.8 to 1.4 times the critical temperature and pressure, and free-stream velocities from 0 to 3 fps. The temperature difference between the heated cylinder and the bulk fluid was varied from 1 to 300 deg F. Several photographs of the flow field are presented. In a supercritical fluid the heat transfer rate increases smoothly and monotonically with increasing temperature difference, increasing velocity, and increasing pressure. In fluid with the bulk temperature below the pseudo-critical temperature the heat transfer coefficient shows large peaks when the cylinder temperature is near the pseudo-critical temperature. The heat transfer coefficient decreases with increasing temperature difference when the bulk fluid temperature is above the pseudo-critical temperature. Supercritical forced convection does not exhibit the characteristic maximum in heat transfer rate shown in forced-flow nucleate boiling. Heat transfer rates at larger temperature differences are very similar in forced-flow film boiling and supercritical forced-flow heat transfer. With this horizontal constant-temperature cylinder, no “bubble-like” or “boiling-like” mechanisms of heat transfer were observed in supercritical free or forced convection.

This content is only available via PDF.
You do not currently have access to this content.