A method is presented for determining the transient temperature distribution of a solid sphere cooling in space. The sphere is assumed initially to be at a uniform temperature and then instantaneously subjected to the radiation sink of space at time zero. This nonlinear problem was solved by using finite-difference computing techniques. Results are presented in dimensionless graphical form over a wide range of variables. This facilitates calculation of the transient temperature history at several points in the sphere.

This content is only available via PDF.
You do not currently have access to this content.