This investigation concerns the application of a flow visualization technique to obtain a quantitative and qualitative description of the secondary flow associated with a slowly oscillating disk. Included in the description is a systematic study of the flow behavior as a function of the Reynolds number. The three-dimensional character of the flow is verified and the development of a toroidal vortex both above and below the oscillating disk is illustrated. The experiments are performed in a vessel similar in design to a typical oscillating body viscometer. The effect of the Reynolds number on the damping rate of the disk is investigated. The influence of natural convective flows on the magnitude and reproducibility of the damping rate is obtained. The development of a secondary flow in the form of a toroidal vortex for both the rotating disk and rotating sphere is also illustrated.

This content is only available via PDF.
You do not currently have access to this content.