Experimental determinations were made of the effects of changes in the temperature, pressure, and Reynolds number of a hot gas stream upon the required flow rate of a single liquid (water) used for film cooling different lengths (4, 5, 6, 7, and 8 in.) of a cylindrical rocket motor combustion chamber. Experiments were also conducted with other coolants, such as anhydrous ammonia, ethyl alcohol, and Freon-113 for determining the effects of the physical properties of those liquids on the required film-coolant flow rates for a single condition of gas stream temperature, pressure, and Reynolds number. Determinations were also made of the heat flux and wall temperature distributions downstream from the terminus of the liquid film; that is, in the region where there is considerable vaporized film coolant in the vicinity of the chamber wall. The experimental results are correlated by means of a simple analysis based on turbulent boundary-layer theory applicable in pipe flows.

This content is only available via PDF.
You do not currently have access to this content.