Integral transforms are used in the application of the weighted residual methods to the solution of problems in heat conduction. The procedure followed consists in reducing the given partial differential equation to an ordinary differential equation by successive applications of appropriate integral transforms, and finding its solution by using the weighted-residual methods. The undetermined coefficients contained in this solution are functions of transform variables. By inverting these functions the coefficients are obtained as functions of the actual variables.

This content is only available via PDF.
You do not currently have access to this content.