The heat-transfer characteristics of a partially enclosed rotating disk have been investigated experimentally by means of a mass-transfer analog. Mass-transfer rates to air from naphthalene coated disks of 4 and 8 in. diameter were measured at speeds between zero and 10,000 rpm and the influence of the spacing between the rotating disk and its housing was investigated with and without source flow. From the experimental results a dimensionless correlation equation suitable for predicting average heat and mass-transfer coefficients for rotating disks with source flow in turbulent flow at rotational Reynolds numbers up to 4 × 105 was deduced. The flow pattern was investigated by means of a hot wire, a smoke visualization technique, and the china clay method.

This content is only available via PDF.
You do not currently have access to this content.