Abstract

This study investigates the performance of high-pressure membrane dehumidifiers (MDs) over a wide range of sweep ratios and feed mass flow rates to emulate the operating conditions of the high-pressure section of an air cycle machine (ACM). A previously validated numerical model and experimental data were used to assess dehumidification efficiency, which exhibited asymptotic behavior with increasing sweep ratio. However, discrepancies between the model and experimental results are shown to emerge at higher feed mass flow rates. These discrepancies are likely due to compressible flow effects, which the model does not capture, coupled with flow choking on the sweep side. Additionally, the study reveals that while dehumidification efficiency tends to approach an asymptote, the dew point continues to decrease significantly with increasing sweep ratios and lower feed mass flow rates, underscoring the nonlinear relationship between dew point and humidity ratio. This behavior indicates that system designers must consider not only efficiency metrics but also dew point reductions in optimizing ACM performance. These findings highlight the need for both component-level and system-level considerations in ACM design incorporating MDs, particularly the use of additional membrane capacity, e.g., parallel membrane operation, to achieve lower dew points and improved overall system performance.

References

1.
Qu
,
M.
,
Abdelaziz
,
O.
,
Gao
,
Z.
, and
Yin
,
H.
,
2018
, “
Isothermal Membrane-Based Air Dehumidification: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
4060
4069
.10.1016/j.rser.2017.10.067
2.
Woods
,
J.
,
2014
, “
Membrane Processes for Heating, Ventilation, and Air Conditioning
,”
Renewable Sustainable Energy Rev.
,
33
, pp.
290
304
.10.1016/j.rser.2014.01.092
3.
Scovazzo
,
P.
, and
MacNeill
,
R.
,
2019
, “
Membrane Module Design, Construction, and Testing for Vacuum Sweep Dehumidification (VSD): Part I, Prototype Development and Module Design
,”
J. Membr. Sci.
,
576
, pp.
96
107
.10.1016/j.memsci.2018.12.076
4.
Scovazzo
,
P.
,
2020
, “
Membrane Module Design, Constructions, and Testing for Vacuum Sweep Dehumidification (VSD): Part II, Prototype Performance versus Variations in Feed Conditions
,”
J. Membr. Sci.
,
611
, p.
118391
.10.1016/j.memsci.2020.118391
5.
Yang
,
B.
,
Yuan
,
W.
,
Gao
,
F.
, and
Guo
,
B.
,
2015
, “
A Review of Membrane-Based Air Dehumidification
,”
Indoor Built Environ.
,
24
(
1
), pp.
11
26
.10.1177/1420326X13500294
6.
Claridge
,
D. E.
,
Culp
,
C.
,
Liu
,
W.
,
Pate
,
M.
,
Haberl
,
J.
,
Bynum
,
J.
,
Tanskyi
,
O.
, and
Schaff
,
F.
,
2019
, “
A New Approach for Drying Moist Air: The Ideal Claridge-Culp-Liu Dehumidification Process With Membrane Separation, Vacuum Compression and Sub-Atmospheric Condensation
,”
Int. J. Refrig.
,
101
, pp.
211
217
.10.1016/j.ijrefrig.2019.03.025
7.
Claridge
,
D. E.
,
Culp
,
C.
,
Pate
,
M.
,
Haberl
,
J.
,
Bynum
,
J.
,
Tanskyi
,
O.
, and
Schaff
,
F.
,
2021
, “
A Performance Analysis of the Claridge-Culp-Liu Dehumidification Process: A Novel Approach for Drying Moist Air Based on Membrane Separation, Vacuum Compression and Sub-Atmospheric Condensation
,”
Int. J. Refrig.
,
122
, pp.
192
200
.10.1016/j.ijrefrig.2020.11.011
8.
Claridge
,
S.
,
2018
, “
Standing, Lying, and Sitting: Translating Building Principles of the Cell Membrane to Synthetic 2D Material Interfaces
,”
Chem. Commun.
,
54
(
50
), pp.
6681
6691
.10.1039/C8CC02596G
9.
Zare Ghadi
,
A.
,
An
,
J.
,
Kim
,
T.
,
Ko
,
J.
,
Yeom
,
C.
, and
Gu
,
B.
,
2025
, “
3D CFD Analysis of Geometrical Design Impact on Hydrodynamic Performance in Hollow Fiber Membrane Contactors
,”
Korean J. Chem. Eng.
,
42
(
2
), pp.
271
289
.10.1007/s11814-024-00345-5
10.
Yao
,
X.
,
Freger
,
V.
,
He
,
X.
,
Wang
,
R.
, and
Kong
,
B.
,
2025
, “
Three-Dimensional CFD Modeling for Hollow Fiber Gas Separation Membrane Modules Based on a Dual Porous Media Model
,”
Chem. Eng. Sci.
,
302
, p.
120864
.10.1016/j.ces.2024.120864
11.
Kharraz
,
J. A.
,
Ali
,
K.
,
Ali
,
M. I. H.
, and
Hasan
,
S. W.
,
2025
, “
Multi-Channel Membrane Distillation Modules: Experimental and CFD Insights Into Enhanced Performance and Energy Efficiency
,”
Desalination
,
601
, p.
118566
.10.1016/j.desal.2025.118566
12.
Ng
,
E.
,
Lau
,
K.
,
Lau
,
W.
, and
Ahmad
,
F.
,
2021
, “
Holistic Review on the Recent Development in Mathematical Modelling and Process Simulation of Hollow Fiber Membrane Contactor for Gas Separation Process
,”
J. Ind. Eng. Chem.
,
104
, pp.
231
257
.10.1016/j.jiec.2021.08.028
13.
Cai
,
J. J.
,
Hawboldt
,
K.
, and
Abdi
,
M. A.
,
2016
, “
Analysis of the Effect of Module Design on Gas Absorption in Cross Flow Hollow Membrane Contactors Via Computational Fluid Dynamics (CFD) Analysis
,”
J. Membr. Sci.
,
520
, pp.
415
424
.10.1016/j.memsci.2016.07.054
14.
Yang
,
B.
,
Yuan
,
W.
,
Kong
,
X.
,
Zheng
,
T.
, and
Li
,
F.
,
2023
, “
Mass Transfer Study on High-Pressure Membrane Dehumidification Applied to Aircraft Environmental Control System
,”
Int. J. Heat Mass Transfer
,
202
, p.
123680
.10.1016/j.ijheatmasstransfer.2022.123680
15.
Niu
,
J.
,
2001
, “
Membrane-Based Enthalpy Exchanger: Material Considerations and Clarification of Moisture Resistance
,”
J. Membr. Sci.
,
189
(
2
), pp.
179
191
.10.1016/S0376-7388(00)00680-3
16.
Zhang
,
L.
,
Liang
,
C.
, and
Pei
,
L.
,
2008
, “
Heat and Moisture Transfer in Application Scale Parallel-Plates Enthalpy Exchangers With Novel Membrane Materials
,”
J. Membr. Sci.
,
325
(
2
), pp.
672
682
.10.1016/j.memsci.2008.08.041
17.
Min
,
J.
, and
Su
,
M.
,
2010
, “
Performance Analysis of a Membrane-Based Energy Recovery Ventilator: Effects of Membrane Spacing and Thickness on the Ventilator Performance
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
991
997
.10.1016/j.applthermaleng.2010.01.010
18.
Yu
,
H.
,
Yang
,
X.
,
Wang
,
R.
, and
Fane
,
A. G.
,
2011
, “
Numerical Simulation of Heat and Mass Transfer in Direct Membrane Distillation in a Hollow Fiber Module With Laminar Flow
,”
J. Membr. Sci.
,
384
(
1–2
), pp.
107
116
.10.1016/j.memsci.2011.09.011
19.
Yuan
,
W.
,
Li
,
Y.
, and
Wang
,
C.
,
2012
, “
Comparison Study of Membrane Dehumidification Aircraft Environmental Control Systems
,”
J. Aircr.
,
49
(
3
), pp.
815
821
.10.2514/1.C031432
20.
Zaw
,
K.
,
Safizadeh
,
M. R.
,
Luther
,
J.
, and
Ng
,
K. C.
,
2013
, “
Analysis of a Membrane Based Air-Dehumidification Unit for Air Conditioning in Tropical Climates
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
370
379
.10.1016/j.applthermaleng.2013.05.029
21.
Yuan
,
W.
,
Yang
,
B.
,
Guo
,
B.
,
Li
,
X.
,
Zuo
,
Y.
, and
Hu
,
W.
,
2015
, “
A Novel Environmental Control System Based on Membrane Dehumidification
,”
Chin. J. Aeronaut.
,
28
(
3
), pp.
712
719
.10.1016/j.cja.2015.04.016
22.
Liu
,
Y.
,
Cui
,
X.
,
Yan
,
W.
,
Su
,
J.
,
Duan
,
F.
, and
Jin
,
L.
,
2020
, “
Analysis of Pressure-Driven Water Vapor Separation in Hollow Fiber Composite Membrane for Air Dehumidification
,”
Sep. Purif. Technol.
,
251
, p.
117334
.10.1016/j.seppur.2020.117334
23.
Gao
,
Z.
,
Abdelaziz
,
O.
, and
Qu
,
M.
,
2017
, “
Modeling and Simulation of Membrane-Based Dehumidification and Energy Recovery Process
,” 2017 ASHRAE Winter Conference, https://www.researchgate.net/publication/315111185_Modeling_and_Simulation_of_Membrane-Based_Dehumidification_and_Energy_Recovery_Process, Las Vegas, NV, Jan. 28–Feb. 1, pp.
1
8
.
24.
Bui
,
T. D.
,
Chen
,
F.
,
Nida
,
A.
,
Chua
,
K. J.
, and
Ng
,
K. C.
,
2015
, “
Experimental and Modeling Analysis of Membrane-Based Air Dehumidification
,”
Sep. Purif. Technol.
,
144
, pp.
114
122
.10.1016/j.seppur.2015.02.019
25.
Zhang
,
L.-Z.
,
Liang
,
C.-H.
, and
Pei
,
L.-X.
,
2010
, “
Conjugate Heat and Mass Transfer in Membrane-Formed Channels in All Entry Regions
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
815
824
.10.1016/j.ijheatmasstransfer.2009.11.043
26.
Hollon
,
D.
,
Wanstall
,
C. T.
,
Roman
,
A.
, and
Johnson
,
D.
,
2024
, “
Heat and Mass Transfer Study of a High-Pressure Membrane Dehumidifier Under Non-Isothermal and Humid Sweep Psychrometric Conditions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
147
(
1
), p.
011601
.10.1115/1.4066332
27.
Hollon
,
D.
,
2023
, “
Icing Mitigation Via High-Pressure Membrane Dehumidification in an Aircraft Thermal Management
,” Ph.D. thesis, https://corescholar.libraries.wright.edu/etd_all/2779/#:~:text=The%20results%20demonstrate%20that%20incorporating,thus%20increasing%20the%20cooling%20capacity.
Wright State University
, Dayton, OH.
28.
GENERON
,
2023
,
Membrane Modules Model 6150GMD
, Generon, Houston, TX.
29.
Lipnizki
,
F.
, and
Field
,
R. W.
,
2001
, “
Mass Transfer Performance for Hollow Fibre Modules With Shell-Side Axial Feed Flow: Using an Engineering Approach to Develop a Framework
,”
J. Membr. Sci.
,
193
(
2
), pp.
195
208
.10.1016/S0376-7388(01)00512-9
30.
Mi
,
L.
, and
Hwang
,
S.-T.
,
1999
, “
Correlation of Concentration Polarization and Hydrodynamic Parameters in Hollow Fiber Modules
,”
J. Membr. Sci.
,
159
(
1–2
), pp.
143
165
.10.1016/S0376-7388(99)00046-0
You do not currently have access to this content.