Graphical Abstract Figure

Graphical illustration of the paper.

Graphical Abstract Figure

Graphical illustration of the paper.

Close modal

Abstract

This study investigates the heat exchange within hot and cold cylinders in a cylindrical vessel featuring a rotating frame equipped with flexible baffles. The research examines the impact of cylinder size, proximity to the center, Rayleigh number, and rotational speed (ω*). Flexible baffles are installed along the vessel walls to enhance mixing. The study employs the FE Method of rotating meshes to discretize and solve time-dependent equations. Findings reveal that using flexible baffles at a rotational speed of ω* = 50 leads to a 5.64% increase in the Nusselt number and a 56.9% decrease in the skin friction. Additionally, the research indicates thatleadncrease in both the rotational speed and the Rayleigh number leads to a corresponding increase in the Nusselt number. Specifically, the Nusselt number surges by 82.9% and 10.2% for Ra = 105 and 103, respectively, when ω* is raised from the rest to 200. Moreover, with a reduction in cylinder size to 0.01 radius, the Nu number boosts by 375.5% for Ra = 105 and 203.3% for Ra = 103, respectively. Moreover, the performance coefficient for flexible baffles, compared to rigid baffles, peaked at 92.48% at a rotation speed of 100 and Ra = 105.

References

1.
Dominguez-Ontiveros
,
E.
, and
Hassan
,
Y. A.
,
2014
, “
Experimental Study of a Simplified 3 × 3 Rod Bundle Using DPTV
,”
Nucl. Eng. Des.
,
279
, pp.
50
59
.10.1016/j.nucengdes.2014.04.037
2.
Azzouz
,
R.
, and
Hamida
,
M. B. B.
,
2023
, “
Natural Convection in a Circular Enclosure With Four Cylinders Under Magnetic Field: Application to Heat Exchanger
,”
Processes
,
11
(
8
), p.
2444
.10.3390/pr11082444
3.
Machi
,
M. H.
,
Farkas
,
I.
, and
Buzas
,
J.
,
2024
, “
Enhancing Solar Air Collector Performance Through Optimized Entrance Flue Design: A Comparative Study
,”
Int. J. Thermofluids
,
21
, p.
100561
.10.1016/j.ijft.2024.100561
4.
Ghaddar
,
N.
, and
Thiele
,
F.
,
1994
, “
Natural Convection Over a Rotating Cylindrical Heat Source in a Rectangular Enclosure
,”
Numer. Heat Transf.
,
26
(
6
), pp.
701
717
.10.1080/10407789408956018
5.
Kimura
,
T.
,
Takeuchi
,
M.
,
Nagai
,
N.
, and
Yoshida
,
T.
,
2003
, “
Heat Transfer Control in an Enclosure Using a Rotating Plate and Stratified Fluids,” Heat
,”
Transfer Asian Res.
,
32
(
6
), pp.
489
500
.10.1002/htj.10081
6.
Paramane
,
S. B.
, and
Sharma
,
A.
,
2009
, “
Numerical Investigation of Heat and Fluid Flow Across a Rotating Circular Cylinder Maintained at Constant Temperature in 2-D Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3205
3216
.10.1016/j.ijheatmasstransfer.2008.12.031
7.
Costa
,
V.
, and
Raimundo
,
A.
,
2010
, “
Steady Mixed Convection in a Differentially Heated Square Enclosure With an Active Rotating Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1208
1219
.10.1016/j.ijheatmasstransfer.2009.10.007
8.
Hussain
,
S. H.
, and
Hussein
,
A. K.
,
2011
, “
Mixed Convection Heat Transfer in a Differentially Heated Square Enclosure With a Conductive Rotating Circular Cylinder at Different Vertical Locations
,”
Int. Commun. Heat Mass Transf
er,
38
(
2
), pp.
263
274
.10.1016/j.icheatmasstransfer.2010.12.006
9.
Liao
,
C.-C.
, and
Lin
,
C.-A.
,
2014
, “
Mixed Convection of a Heated Rotating Cylinder in a Square Enclosure
,”
Int. J. Heat Mass Transfer
,
72
, pp.
9
22
.10.1016/j.ijheatmasstransfer.2013.12.081
10.
Chatterjee
,
D.
,
Gupta
,
S. K.
, and
Mondal
,
B.
,
2014
, “
Mixed Convective Transport in a Lid-Driven Cavity Containing a Nanofluid and a Rotating Circular Cylinder at the Center
,”
Int. Commun. Heat Mass Transfer
,
56
, pp.
71
78
.10.1016/j.icheatmasstransfer.2014.06.002
11.
Atanasova
,
G.
,
Ducci
,
A.
, and
Micheletti
,
M.
,
2024
, “
Fluid Dynamics and Mixing in a Novel Intermittently Rotating Bioreactor for CAR-T Cell Therapy: Spin-Down From Incomplete Spin-Up
,”
Chem. Eng. Res. Des.
,
205
, pp.
486
497
.10.1016/j.cherd.2024.04.016
12.
Mokhefi
,
A.
,
2024
, “
Hydrodynamic and Thermal Performance Analysis of an Inclined Anchor Impeller Designed for Yield Stress Food Mixing Applications
,”
Food Bioprod. Process.
,
143
, pp.
255
270
.10.1016/j.fbp.2023.12.006
13.
Yin
,
Y.
,
Huang
,
K.
,
Su
,
B.
,
Lin
,
M.
, and
Wang
,
Q.
,
2024
, “
Experimental Study on the Flow Mixing in T-Junctions With an Impeller
,”
Phys. Fluids
, 36(2), p.
025110
.10.1063/5.0180142
14.
Karcz
,
J.
, and
Major
,
M.
,
1998
, “
An Effect of a Baffle Length on the Power Consumption in an Agitated Vessel
,”
Chem. Eng. Process.
,
37
(
3
), pp.
249
256
.10.1016/S0255-2701(98)00033-6
15.
Promvonge
,
P.
,
Sripattanapipat
,
S.
,
Tamna
,
S.
,
Kwankaomeng
,
S.
, and
Thianpong
,
C.
,
2010
, “
Numerical Investigation of Laminar Heat Transfer in a Square Channel With 45° Inclined Baffles
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
170
177
.10.1016/j.icheatmasstransfer.2009.09.010
16.
Sriromreun
,
P.
,
Thianpong
,
C.
, and
Promvonge
,
P.
,
2012
, “
Experimental and Numerical Study on Heat Transfer Enhancement in a Channel With Z-Shaped Baffles
,”
Int. Commun. Heat Mass Transf
er,
39
(
7
), pp.
945
952
.10.1016/j.icheatmasstransfer.2012.05.016
17.
Xia
,
D.
,
Mao
,
Z.
,
Zhou
,
S.
,
He
,
X.
, and
Wang
,
Y.
,
2023
, “
Optimized Design of Solid–Liquid Dual-Impeller Mixing Systems for Enhanced Efficiency
,”
ACS Omega
,
8
(
50
), pp.
47635
47645
.10.1021/acsomega.3c05762
18.
Al-Amiri
,
A.
, and
Khanafer
,
K.
,
2011
, “
Fluid-Structure Interaction Analysis of Mixed Convection Heat Transfer in a Lid-Driven Cavity With a Flexible Bottom Wall
,”
Int. J. Heat Mass Transf
er,
54
(
17–18
), pp.
3826
3836
.10.1016/j.ijheatmasstransfer.2011.04.047
19.
Engel
,
M.
, and
Griebel
,
M.
,
2009
, “
Flow Simulation on Moving Boundary-Fitted Grids and Application to Fluid-Structure Interaction
,”
Int. J. Numer. Methods Eng.
, 50(4), pp.
437
468
.10.1002/fld.1067
20.
Shi
,
X.
, and
Khodadadi
,
J.
,
2004
, “
Fluid Flow and Heat Transfer in a Lid-Driven Cavity Due to an Oscillating Thin Fin: Transient Behavior
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
126
(
6
), pp.
924
930
.10.1115/1.1833362
21.
Gomes
,
J. P.
, and
Lienhart
,
H.
,
2013
, “
Fluid-Structure Interaction-Induced Oscillation of Flexible Structures in Laminar and Turbulent Flows
,”
J. Fluid Mech.
,
715
, pp.
537
572
.10.1017/jfm.2012.533
22.
Ku
,
C.-H.
,
2015
, “
Flexible Heat Transfer Assembly
,” U.S. Patent Application No. 14/084,284.
23.
Soti
,
A. K.
,
Bhardwaj
,
R.
, and
Sheridan
,
J.
,
2015
, “
Flow-Induced Deformation of a Flexible Thin Structure as a Manifestation of Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1070
1081
.10.1016/j.ijheatmasstransfer.2015.01.048
24.
Ghalambaz
,
M.
,
Jamesahar
,
E.
,
Ismael
,
M. A.
, and
Chamkha
,
A. J.
,
2017
, “
Fluid-Structure Interaction Study of Natural Convection Heat Transfer Over a Flexible Oscillating Fin in a Square Cavity
,”
Int. J. Therm. Sci.
,
111
, pp.
256
273
.10.1016/j.ijthermalsci.2016.09.001
25.
Saleh
,
H.
,
Siri
,
Z.
, and
Hashim
,
I.
,
2019
, “
Role of Fluid-Structure Interaction in Mixed Convection From a Circular Cylinder in a Square Enclosure With Double Flexible Oscillating Fins
,”
Int. J. Mech. Sci.
,
161-162
, p.
105080
.10.1016/j.ijmecsci.2019.105080
26.
Mahmood
,
F. T.
,
Das
,
A.
,
Smriti
,
R. B.
,
Hakim
,
M. A.
,
Saha
,
S.
, and
Hasan
,
M. N.
,
2023
, “
Role of Wall-Mounted Flexible Flow Modulator on Thermo-Hydraulic Characteristics of Pulsating Channel Flow
,”
Results Eng.
,
17
, p.
100941
.10.1016/j.rineng.2023.100941
27.
Roy
,
P. P.
,
Chowdhury
,
S.
,
Raj
,
M. H.
,
Islam
,
M. Q.
, and
Saha
,
S.
,
2023
, “
Forced, Natural and Mixed Convection of Non-Newtonian Fluid Flow in a Square Chamber With Moving Lid and Discrete Bottom Heating
,”
Results Eng.
,
17
, p.
100939
.10.1016/j.rineng.2023.100939
28.
Mahmood
,
F. T.
,
Chowdhury
,
T. S.
, and
Hasan
,
M. N.
,
2024
, “
Fluid-Structure Interaction Induced Mixed Convection Characteristics in a Lid-Driven Square Cavity With Non-Newtonian Power-Law Fluids
,”
Int. J. Thermofluids
,
22
, p.
100687
.10.1016/j.ijft.2024.100687
29.
Alsabery
,
A. I.
,
Ismael
,
M. A.
,
Chamkha
,
A. J.
, and
Hashim
,
I.
,
2018
, “
Numerical Investigation of Mixed Convection and Entropy Generation in a Wavy-Walled Cavity Filled With Nanofluid and Involving a Rotating Cylinder
,”
Entropy
,
20
(
9
), p.
664
.10.3390/e20090664
30.
Sheremet
,
M. A.
,
Oztop
,
H. F.
,
Pop
,
I.
, and
Abu-Hamdeh
,
N.
,
2015
, “
Analysis of Entropy Generation in Natural Convection of Nanofluid Inside a Square Cavity Having Hot Solid Block: Tiwari and Das' Model
,”
Entropy
,
18
(
1
), p.
9
.10.3390/e18010009
31.
Bondareva
,
N. S.
,
Sheremet
,
M. A.
,
Oztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2017
, “
Entropy Generation Due to Natural Convection of a Nanofluid in a Partially Open Triangular Cavity
,”
Adv. Powder Technol.
,
28
(
1
), pp.
244
255
.10.1016/j.apt.2016.09.030
32.
Sheremet
,
M. A.
,
Pop
,
I.
,
Oztop
,
H. F.
, and
Abu-Hamdeh
,
N.
,
2017
, “
Natural Convection of Nanofluid Inside a Wavy Cavity With Non-Uniform Heating: Entropy Generation Analysis
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
, pp.
958
980
.10.1108/HFF-02-2016-0063
33.
Hashim
,
I.
,
Alsabery
,
A. I.
,
Sheremet
,
M. A.
, and
Chamkha
,
A. J.
,
2019
, “
Numerical Investigation of Natural Convection of Al2O3-Water Nanofluid in a Wavy Cavity With Conductive Inner Block Using Buongiorno's Two-Phase Model
,”
Adv. Powder Technol.
,
30
(
2
), pp.
399
414
.10.1016/j.apt.2018.11.017
34.
Abd Al-Hasan
,
A. Q.
,
Ismael
,
M. A.
, and
Ghalambaz
,
M.
,
2024
, “
Heat Transfer in a Vessel-Tubes Array With a Rotating Baffle: A Rotating Frame Modeling Approach
,”
Int. J. Thermofluids
,
22
, p.
100659
.10.1016/j.ijft.2024.100659
35.
Wu
,
K.
,
Huang
,
F.
, and
Shen
,
J.
,
2022
, “
A New Class of Higher-Order Decoupled Schemes for the Incompressible Navier-Stokes Equations and Applications to Rotating Dynamics
,”
J. Comput. Phys.
,
458
, p.
111097
.10.1016/j.jcp.2022.111097
36.
Menon
,
S. H.
,
Rao A
,
R.
,
Mathew
,
J.
, and
J
,
J.
,
2021
, “
Derivation of Navier–Stokes Equation in Rotational Frame for Engineering Flow Analysis
,”
Int. J. Thermofluids
,
11
, p.
100096
.10.1016/j.ijft.2021.100096
37.
Ali
,
F.
,
Murtaza
,
S.
,
Sheikh
,
N. A.
, and
Khan
,
I.
,
2019
, “
Heat Transfer Analysis of Generalized Jeffery Nanofluid in a Rotating Frame: Atangana–Baleanu and Caputo–Fabrizio Fractional Models
,”
Chaos Solitons Fractals
,
129
, pp.
1
15
.10.1016/j.chaos.2019.08.013
38.
Mohammed
,
E. G.
, and
Abood
,
F. A.
,
2022
, “
Numerical Study Mixed Convection in a Channel With an Open Cavity Involving Rotary Cylinder
,”
Basrah J. Eng. Sci.
,
22
(
1
), pp.
20
28
.10.33971/bjes.22.1.3
39.
Bonet
,
J.
, and
Wood
,
D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
40.
Shih
,
Y.-C.
,
Khodadadi
,
J.
,
Weng
,
K.-H.
, and
Ahmed
,
A.
,
2009
, “
Periodic Fluid Flow and Heat Transfer in a Square Cavity Due to an Insulated or Isothermal Rotating Cylinder
,”
ASME J. Heat Mass Transfer-Trans. ASME.
,
131
(
11
), p.
111701
.10.1115/1.3154620
41.
Schenk
,
O.
, and
Gärtner
,
K.
,
2004
, “
Solving Unsymmetric Sparse Systems of Linear Equations With PARDISO
,”
Future Gener. Comput. Syst.
,
20
(
3
), pp.
475
487
.10.1016/j.future.2003.07.011
42.
Wriggers
,
P.
,
2008
,
Nonlinear Finite Element Methods
,
Springer
,
Berlin, Heidelberg
.
43.
Verbosio
,
F.
,
De Coninck
,
A.
,
Kourounis
,
D.
, and
Schenk
,
O.
,
2017
, “
Enhancing the Scalability of Selected Inversion Factorization Algorithms in Genomic Prediction
,”
J. Comput. Sci.
,
22
, pp.
99
108
.10.1016/j.jocs.2017.08.013
44.
Bollhöfer
,
M.
,
Eftekhari
,
A.
,
Scheidegger
,
S.
, and
Schenk
,
O.
,
2019
, “
Large-Scale Sparse Inverse Covariance Matrix Estimation
,”
SIAM J. Sci. Comput.
,
41
(
1
), pp.
A380
A401
.10.1137/17M1147615
45.
Bollhöfer
,
M.
,
Schenk
,
O.
,
Janalik
,
R.
,
Hamm
,
S.
, and
Gullapalli
,
K.
,
2020
, “
State-of-the-Art Sparse Direct Solvers
,”
Parallel Algorithms in Computational Science and Engineering,
Birkhäuser , Basel, Switzerland, pp.
3
33
.10.1007/978-3-030-43736-7
46.
Schenk
,
O.
, and
Gärtner
,
K.
,
2011
, “
Pardiso
,”
Encyclopedia of Parallel Computing
,
D.
Padua
, ed.,
Springer
,
Boston, MA
.
47.
Tarannum
,
F.
,
Danayat
,
S.
,
Nayal
,
A.
,
Muthaiah
,
R.
,
Annam
,
R. S.
, and
Garg
,
J.
,
2023
, “
Thermally Expanded Graphite Polyetherimide Composite With Superior Electrical and Thermal Conductivity
,”
Mater. Chem. Phys.
,
298
, p.
127404
.10.1016/j.matchemphys.2023.127404
48.
Küttler
,
U.
, and
Wall
,
W. A.
,
2008
, “
Fixed-Point Fluid–Structure Interaction Solvers With Dynamic Relaxation
,”
Comput. Mech.
,
43
(
1
), pp.
61
72
.10.1007/s00466-008-0255-5
49.
King
,
M. P.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2007
, “
Rayleigh-Bénard Convection in Open and Closed Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
305
311
.10.1115/1.2432898
You do not currently have access to this content.