Abstract

Bottom-heated viscoelastic fluids in a cavity transit from conduction to convection through periodic oscillations or steady-states of flow patterns, depending on the Rayleigh number and other fluid parameters. It is in contrast to the Newtonian fluids, where the transition is always to steady-state convection. The trapezoidal cavities filled with Oldroyd-B fluid have been explored with side walls inclined from 80 deg to 100 deg using OPENFOAM-based RheoTool simulations. The obtuse angle trapezoidal cavities have five different types of solutions. Four of these solutions consist of one-roll and two-roll solutions (TRS) with and without oscillations. The fifth solution is the conduction-dominated solution with low flow and heat transfer. However, since it lacks two-roll solutions, there are only three kinds of solutions for Rayleigh–Bénard convection (RBC) in an acute angle trapezoidal cavity (AATZC). The bifurcation maps and heat transfer characteristics are presented for various types of rolls. One-roll periodic solution exists beyond the viscosity ratio of 0.5 in AATZCs, while it is up to 0.5 in square and obtuse angle trapezoidal cavity (TZCs). Moreover, two-roll periodic solutions are observed beyond the viscosity ratio of 0.5 in obtuse angle TZCs. Isotherms and flow patterns are presented to illustrate the dynamics of each flow regime. The effect of sidewall angles on the stabilization of the flow is also investigated. The periodic oscillations are observed up to higher Rayleigh numbers for trapezoidal cavities with smaller cavity angles compared to those with higher cavity angles.

References

1.
Venturi
,
D.
,
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2010
, “
Stochastic Bifurcation Analysis of Rayleigh-Bénard Convection
,”
J. Fluid Mech.
,
650
, pp.
391
413
.10.1017/S0022112009993685
2.
Maurya
,
G.
,
Ahmed
,
N.
,
Singh
,
S.
, and
Kumar
,
L.
,
2024
, “
Rayleigh-Bénard Convection With Multiple Solutions in Trapezoidal Closed Cavities
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
6
), p.
062601
.10.1115/1.4065005
3.
Maurya
,
G.
,
Kumar
,
A.
,
Ahmed
,
N.
, and
Singh
,
S.
,
2022
, “
Co-Existence of Multiple Steady States in Bottom Heated Trapezoidal Closed Cavities
,” 9th International and 49th National Conference on Fluid Mechanics and Fluid Power (
FMFP
), Roorkee, India, Dec. 14--16, pp.
191
200
.10.1007/978-981-99-5752-1_16
4.
Oldroyd
,
J. G.
,
1949
, “
On the Formulation of Rheological Equations of State
,”
Proc. R. Soc. London, Ser. A
,
200
(
1063
), p.
523--541
.10.1098/rspa.1950.0035
5.
Oldroyd
,
J. G.
,
1953
, “
The Elastic and Viscous Properties of Emulsions and Suspensions
,”
Proc. R. Soc. London, Ser. A
,
218
(
1132
), pp.
122
132
.10.1098/rspa.1953.0092
6.
Oldroyd
,
J. G.
,
1958
, “
Non-Newtonian Effects in Steady Motion of Some Idealized Elastico-Viscous Liquids
,”
Proc. R. Soc. London, Ser. A
,
245
(
1241
), pp.
278
297
.10.1098/rspa.1958.0083
7.
Herbert
,
D. M.
,
1963
, “
On the Stability of Visco-Elastic Liquids in Heated Plane Couette Flow
,”
J. Fluid Mech.
,
17
(
3
), pp.
353
359
.10.1017/S0022112063001397
8.
Green
,
T.
,
1968
, “
Oscillating Convection in an Elasticoviscous Liquid
,”
Phys. Fluids
,
11
(
7
), pp.
1410
1412
.10.1063/1.1692123
9.
Vest
,
C. M.
, and
Arpaci
,
V. S.
,
1969
, “
Overstability of a Viscoelastic Fluid Layer Heated From Below
,”
J. Fluid Mech.
,
36
(
3
), pp.
613
623
.10.1017/S0022112069001881
10.
Eltayeb
,
I. A.
,
1977
, “
Nonlinear Thermal Convection in an Elasticoviscous Layer Heated From Below
,”
Proc. R. Soc. London, Ser. A
,
356
(
1685
), pp.
161
176
.10.1098/rspa.1977.0127
11.
Park
,
H. M.
, and
Lee
,
H. S.
,
1995
, “
Nonlinear Hydrodynamic Stability of Viscoelastic Fluids Heated From Below
,”
J. Non-Newtonian Fluid Mech.
,
60
(
1
), pp.
1
26
.10.1016/0377-0257(95)01371-2
12.
Park
,
H. M.
, and
Lee
,
H. S.
,
1996
, “
Hopf Bifurcations of Viscoelastic Fluids Heated From Below
,”
J. Non-Newtonian Fluid Mech.
,
66
(
1
), pp.
1
34
.10.1016/0377-0257(96)01458-9
13.
Park
,
H. M.
, and
Ryu
,
D. H.
,
2001
, “
Rayleigh–Bénard Convection of Viscoelastic Fluids in Finite Domains
,”
J. Non-Newtonian Fluid Mech.
,
98
(
2–3
), pp.
169
184
.10.1016/S0377-0257(01)00104-5
14.
Park
,
H. M.
, and
Ryu
,
D. H.
,
2001
, “
Hopf Bifurcation in Thermal Convection of Viscoelastic Fluids Within Finite Domains
,”
J. Non-Newtonian Fluid Mech.
,
101
(
1–3
), pp.
1
19
.10.1016/S0377-0257(01)00145-8
15.
Park
,
H. M.
, and
Park
,
K. S.
,
2004
, “
Rayleigh-Bénard Convection of Viscoelastic Fluids in Arbitrary Finite Domains
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2251
2259
.10.1016/j.ijheatmasstransfer.2003.11.022
16.
Lappa
,
M.
, and
Boaro
,
A.
,
2020
, “
Rayleigh-Bénard Convection in Viscoelastic Liquid Bridges
,”
J. Fluid Mech.
,
904
, p.
A2
.10.1017/jfm.2020.608
17.
Zheng
,
X.
,
Hamed Boutaous
,
M.
,
Xin
,
S.
,
Siginer
,
D. A.
,
Knikker
,
R.
, and
New
,
A.
,
2019
, “
Approach to the Numerical Modeling of the Viscoelastic Rayleigh-Bénard Convection
,”
ASME
Paper No. IMECE2019-11675.10.1115/IMECE2019-11675
18.
Zheng
,
X.
,
Hagani
,
F.
,
Boutaous
,
M.
,
Knikker
,
R.
,
Xin
,
S.
, and
Siginer
,
D. A.
,
2022
, “
Pattern Selection in Rayleigh-Bénard Convection With Nonlinear Viscoelastic Fluids
,”
Phys. Rev. Fluids
,
7
(
2
), p.
023301
.10.1103/PhysRevFluids.7.023301
19.
Zheng
,
X.
,
2022
, “
Numerical Study on Viscoelastic Rayleigh-Bénard Convection
,” Ph.D. dissertation,
Université de Lyon
,
Français
.
20.
Kaur
,
J.
, and
Gupta
,
U.
,
2023
, “
Nonlinear Analysis for Thermal Convection in Oldroyd-B Nanofluids With Zero Nanoparticle Flux on the Boundaries
,”
Indian J. Phys.
,
97
(
3
), pp.
845
853
.10.1007/s12648-022-02422-z
21.
Maurya
,
G.
,
Singh
,
S.
, and
Kumar
,
L.
,
2024
, “
Oscillatory One-Roll and Two-Roll Solutions in Laminar Viscoelastic Rayleigh-Bénard Convection in a Square Cavity
,”
J. Non-Newtonian Fluid Mech.
,
332
, p.
105308
.10.1016/j.jnnfm.2024.105308
22.
Krishnan
,
M.
,
Ugaz
,
V. M.
, and
Burns
,
M. A.
,
2002
, “
PCR in a Rayleigh-Bénard Convection Cell
,”
Science
,
298
(
5594
), pp.
793
793
.10.1126/science.298.5594.793
23.
Braun
,
D.
,
2004
, “
PCR by Thermal Convection
,”
Mod. Phys. Lett. B
,
18
(
16
), pp.
775
784
.10.1142/S0217984904007049
24.
Moore
,
P.
,
2005
, “
Replicating Success
,”
Nature
,
435
(
7039
), pp.
235
235
.10.1038/435235a
25.
Braun
,
D.
,
Goddard
,
N. L.
, and
Libchaber
,
A.
,
2003
, “
Exponential DNA Replication by Laminar Convection
,”
Phys. Rev. Lett.
,
91
(
15
), p.
158103
.10.1103/PhysRevLett.91.158103
26.
Zhang
,
C.
,
Xu
,
J.
,
Ma
,
W.
, and
Zheng
,
W.
,
2006
, “
PCR Microfluidic Devices for DNA Amplification
,”
Biotechnol. Adv.
,
24
(
3
), pp.
243
284
.10.1016/j.biotechadv.2005.10.002
27.
Maurya
,
G.
,
Singh
,
S.
, and
Kumar
,
L.
,
2022
, “
Stability of Rayleigh-Bénard Convection in Trapezoidal Cavities
,”
Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference
, Chennai, Tamil Nadu, India, Dec. 17–20, pp.
2751
2756
.10.1615/IHMTC-2021.4170
28.
Saxena
,
A.
,
Kishor
,
V.
,
Srivastava
,
A.
, and
Singh
,
S.
,
2020
, “
Whole Field Measurements to Identify the Critical Rayleigh Number for the Onset of Natural Convection in Top Open Cavity
,”
Exp. Heat Transfer
,
33
(
2
), pp.
123
140
.10.1080/08916152.2019.1586800
29.
Saxena
,
A.
,
Kishor
,
V.
,
Singh
,
S.
, and
Srivastava
,
A.
,
2018
, “
Experimental and Numerical Study on the Onset of Natural Convection in a Cavity Open at the Top
,”
Phys. Fluids
,
30
(
5
), p.
057102
.10.1063/1.5025092
30.
Saxena
,
A.
,
Mishra
,
S.
,
Maurya
,
G.
,
Singh
,
S.
, and
Pandey
,
V.
,
2024
, “
Identification of the Onset of Bifurcations in a Trapezoidal Cavity Receiver Open at the Top
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
11
), p.
112601
.10.1115/1.4065778
31.
Pimenta
,
F.
, and
Alves
,
M. A.
,
2016
, “
rheoTool
,” GitHub, San Francisco, CA, accessed June 5, 2025, https://github.com/fppimenta/rheoTool
You do not currently have access to this content.