Abstract

Condensation is a widely utilized phenomenon, prized for its high heat flux capabilities in HVAC, industrial, power generation, and heat dissipation applications. Improving heat transfer in condenser designs can be widely beneficial in these areas. One approach to achieving this is to utilize a converging taper to enhance interfacial shear, leading to improved heat transfer through a condensate film-thinning effect. This study proposes a new approach to modeling the performance of tapered plate condensers by coupling the laminar and turbulent film regimes. An interpolation function in the form of a sigmoid is used to smoothly transition between the laminar and turbulent film regimes. The approach relies on an open-source implementation of Powell's hybrid algorithm to solve the arising set of nonlinear governing equations for film condensation. The key governing equations describing the liquid film growth and heat transfer in film condensation were adapted from well-established and tested literature. The present model was compared to available correlations and experimental data and reproduces local variations in the heat transfer coefficient accurately. A parameter study was conducted with the present model to show the predicted performance characteristics in tapered plate condensers. The results of this study show an enhancement in the average heat transfer coefficient of up to 35–60% can be achieved depending on operational and geometric conditions. Generally, increased taper angles lead to larger heat transfer enhancement.

References

1.
Guichet
,
V.
, and
Jouhara
,
H.
,
2020
, “
Condensation, Evaporation and Boiling of Falling Films in Wickless Heat Pipes (Two-Phase Closed Thermosyphons): A Critical Review of Correlations
,”
Int. J. Thermofluids
,
1–2
, p.
100001
.10.1016/j.ijft.2019.100001
2.
Gou
,
J.
,
Wang
,
B.
, and
Shan
,
J.
,
2017
, “
Development of an Analytical Model for Pure Vapor Downflow Condensation in a Vertical Tube
,”
Nucl. Eng. Des.
,
320
, pp.
346
360
.10.1016/j.nucengdes.2017.05.032
3.
Kromer
,
D.
,
Garimella
,
S.
, and
Chandrasekaran
,
S.
,
2021
, “
Experimental Investigation and Modeling of Flow Boiling in Microchannel Heat Exchangers for Integral Steam Generator Applications
,”
Nucl. Eng. Des.
,
372
, p.
111001
.10.1016/j.nucengdes.2020.111001
4.
Hughes
,
M. T.
, and
Garimella
,
S.
,
2024
, “
Practical Design Guidelines for Heat Transfer Enhancement of Condensers
,”
Appl. Therm. Eng.
,
236
, p.
121623
.10.1016/j.applthermaleng.2023.121623
5.
Salman
,
M.
,
Dhamodharan
,
P.
,
Prabakaran
,
R.
, and
Kim
,
S. C.
,
2024
, “
Condensation Heat Transfer Performance of R290 in a Plate Heat Exchanger for Electric Vehicle Heat Pumps
,”
Int. J. Therm. Sci.
,
203
, p.
109103
.10.1016/j.ijthermalsci.2024.109103
6.
Kandlikar
,
S. G.
,
2021
, “
Evaporators, Condensers and Systems for Separation
,” Patent No. 63/042,792.
7.
Wang
,
X. W.
,
Leong
,
K. C.
, and
Wong
,
T. N.
,
2017
, “
Numerical Analysis of Different Fluted Fins for Condensation on a Vertical Tube
,”
Int. J. Therm. Sci.
,
122
, pp.
359
370
.10.1016/j.ijthermalsci.2017.09.003
8.
Sajjan
,
S. K.
,
Dewangan
,
A. K.
,
Kumar
,
R.
, and
Gupta
,
A.
,
2021
, “
Experimental Investigation and Non-Dimensional Regression Analysis of Condensation Heat Transfer of R-600a Over Finned Tubes
,”
Int. J. Therm. Sci.
,
170
, p.
107174
.10.1016/j.ijthermalsci.2021.107174
9.
Olivier
,
J. A.
,
Liebenberg
,
L.
,
Thome
,
J. R.
, and
Meyer
,
J. P.
,
2007
, “
Heat Transfer, Pressure Drop, and Flow Pattern Recognition During Condensation Inside Smooth, Helical Micro-Fin, and Herringbone Tubes
,”
Int. J. Refrig.
,
30
(
4
), pp.
609
623
.10.1016/j.ijrefrig.2006.11.003
10.
Rose
,
J. W.
,
2004
, “
Surface Tension Effects and Enhancement of Condensation Heat Transfer
,”
Chem. Eng. Res. Des.
,
82
(
4
), pp.
419
429
.10.1205/026387604323050128
11.
Liu
,
P.
,
Ho
,
J. Y.
,
Wong
,
T. N.
, and
Toh
,
K. C.
,
2020
, “
Laminar Film Condensation Inside and Outside Vertical Diverging/Converging Small Channels: A Theoretical Study
,”
Int. J. Heat Mass Transfer
,
149
, p.
119193
.10.1016/j.ijheatmasstransfer.2019.119193
12.
Liu
,
P.
,
Ho
,
J. Y.
,
Kandasamy
,
R.
, and
Wong
,
T. N.
,
2022
, “
Theoretical Study on Forced Convection Filmwise Condensation Inside Converging Channels in the Presence of a Non-Condensable Gas
,”
Int. J. Therm. Sci.
,
181
, p.
107775
.10.1016/j.ijthermalsci.2022.107775
13.
Bai
,
C.
,
Qiu
,
Y.
, and
Wei
,
M.
,
2023
, “
Theoretical Analysis for Condensation Heat Transfer Performance Inside Converging-Shaped Microchannel Under Varying-Gravity Conditions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
10
), p.
101003
.10.1115/1.4062853
14.
Kandlikar
,
S. G.
,
Shoji
,
M.
, and
Dhir
,
V. K.
,
1999
,
Handbook of Phase Change: Boiling and Condensation
,
Taylor & Francis
,
Philadelphia, PA
.
15.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1996
,
Convective Boiling and Condensation
,
Clarendon Press
,
New York/Oxford, UK
.
16.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
, eds.,
1998
, “
Condensation
,”
Handbook of Heat Transfer
,
McGraw-Hill Education
,
New York
.
17.
Rohsenow
,
W. M.
,
Webber
,
J. H.
, and
Ling
,
A. T.
,
1956
, “
Effect of Vapor Velocity on Laminar and Turbulent-Film Condensation
,”
ASME Trans. Am. Soc. Mech. Eng.
,
78
(
8
), pp.
1637
1642
.10.1115/1.4014122
18.
Seban
,
R. A.
, and
Hodgson
,
J. A.
,
1982
, “
Laminar Film Condensation in a Tube With Upward Vapor Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1291
1300
.10.1016/0017-9310(82)90123-5
19.
El-Genk
,
M. S.
, and
Saber
,
H. H.
,
1997
, “
Flooding Limit in Closed, Two-Phase Flow Thermosyphons
,”
Int. J. Heat Mass Transfer
,
40
(
9
), pp.
2147
2164
.10.1016/S0017-9310(96)00269-4
20.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2012
, “
Theoretical Model for Annular Flow Condensation in Rectangular Micro-Channels
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
958
970
.10.1016/j.ijheatmasstransfer.2011.10.014
21.
Siow
,
E. C.
,
Ormiston
,
S. J.
, and
Soliman
,
H. M.
,
2007
, “
Two-Phase Modelling of Laminar Film Condensation From Vapour–Gas Mixtures in Declining Parallel-Plate Channels
,”
Int. J. Therm. Sci.
,
46
(
5
), pp.
458
466
.10.1016/j.ijthermalsci.2006.07.001
22.
Shamsabadi
,
H.
,
Rashidi
,
S.
,
Esfahani
,
J. A.
, and
Keshmiri
,
A.
,
2020
, “
Condensation in the Presence of Non-Condensable Gases in a Convergent 3D Channel
,”
Int. J. Heat Mass Transfer
,
152
, p.
119511
.10.1016/j.ijheatmasstransfer.2020.119511
23.
Zhang
,
J.
,
Li
,
W.
, and
Sherif
,
S. A.
,
2016
, “
A Numerical Study of Condensation Heat Transfer and Pressure Drop in Horizontal Round and Flattened Minichannels
,”
Int. J. Therm. Sci.
,
106
, pp.
80
93
.10.1016/j.ijthermalsci.2016.02.019
24.
Peterson
,
P. F.
,
Schrock
,
V. E.
, and
Kuhn
,
S. Z.
,
1997
, “
Recent Experiments for Laminar and Turbulent Film Heat Transfer in Vertical Tubes
,”
Nucl. Eng. Des.
,
175
(
1–2
), pp.
157
166
.10.1016/S0029-5493(97)00171-4
25.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2012
, “
Flow Condensation in Parallel Micro-Channels—Part 2: Heat Transfer Results and Correlation Technique
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
984
994
.10.1016/j.ijheatmasstransfer.2011.10.012
26.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flow
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
238
250
.10.1016/j.ijheatmasstransfer.2012.09.032
27.
Cavallini
,
A.
,
Col
,
D. D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
.10.1080/01457630600793970
28.
Mancin
,
S.
,
Del Col
,
D.
, and
Rossetto
,
L.
,
2012
, “
Partial Condensation of R407C and R410A Refrigerants Inside a Plate Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
149
157
.10.1016/j.expthermflusci.2011.09.007
29.
Mancin
,
S.
,
Del Col
,
D.
, and
Rossetto
,
L.
,
2013
, “
R32 Partial Condensation Inside a Brazed Plate Heat Exchanger
,”
Int. J. Refrig.
,
36
(
2
), pp.
601
611
.10.1016/j.ijrefrig.2012.10.019
30.
Tao
,
X.
, and
Infante Ferreira
,
C. A.
,
2019
, “
Heat Transfer and Frictional Pressure Drop During Condensation in Plate Heat Exchangers: Assessment of Correlations and a New Method
,”
Int. J. Heat Mass Transfer
,
135
, pp.
996
1012
.10.1016/j.ijheatmasstransfer.2019.01.132
31.
Kuo
,
W. S.
,
Lie
,
Y. M.
,
Hsieh
,
Y. Y.
, and
Lin
,
T. F.
,
2005
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5205
5220
.10.1016/j.ijheatmasstransfer.2005.07.023
32.
Longo
,
G. A.
,
Righetti
,
G.
, and
Zilio
,
C.
,
2015
, “
A New Computational Procedure for Refrigerant Condensation Inside Herringbone-Type Brazed Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
82
, pp.
530
536
.10.1016/j.ijheatmasstransfer.2014.11.032
33.
Shah
,
M. M.
,
2016
, “
Comprehensive Correlations for Heat Transfer During Condensation in Conventional and Mini/Micro Channels in All Orientations
,”
Int. J. Refrig.
,
67
, pp.
22
41
.10.1016/j.ijrefrig.2016.03.014
34.
Kuo
,
C. Y.
, and
Pan
,
C.
,
2009
, “
The Effect of Cross-Section Design of Rectangular Microchannels on Convective Steam Condensation
,”
J. Micromech. Microeng.
,
19
(
3
), p.
035017
.10.1088/0960-1317/19/3/035017
35.
Kuo
,
C. Y.
, and
Pan
,
C.
,
2010
, “
Two-Phase Flow Pressure Drop and Heat Transfer During Condensation in Microchannels With Uniform and Converging Cross-Sections
,”
J. Micromech. Microeng.
,
20
(
9
), p.
095001
.10.1088/0960-1317/20/9/095001
36.
Seban
,
R. A.
, and
Faghri
,
A.
,
1978
, “
Wave Effects on the Transport to Falling Laminar Liquid Films
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
100
(
1
), pp.
143
147
.10.1115/1.3450488
37.
McAdams
,
W. H.
,
1954
,
Heat Transmission
,
McGraw-Hill
,
New York
.
38.
Hirshburg
,
R. I.
, and
Florschuetz
,
L. W.
,
1982
, “
Laminar Wavy-Film Flow: Part II, Condensation and Evaporation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
104
(
3
), pp.
459
464
.10.1115/1.3245115
39.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks––II. Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2773
2784
.10.1016/S0017-9310(03)00042-5
40.
Kandlikar
,
S. G.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Amsterdam, The Netherlands/San Diego, CA/Oxford, UK
.
41.
Jones
,
O. C.
, Jr.
,
1976
, “
An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
173
180
.10.1115/1.3448250
42.
Kim
,
S.-M.
,
Kim
,
J.
, and
Mudawar
,
I.
,
2012
, “
Flow Condensation in Parallel Micro-Channels—Part 1: Experimental Results and Assessment of Pressure Drop Correlations
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
971
983
.10.1016/j.ijheatmasstransfer.2011.10.013
43.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2012
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3246
3261
.10.1016/j.ijheatmasstransfer.2012.02.047
44.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Effect of Taper on Pressure Recovery During Flow Boiling in Open Microchannels With Manifold Using Homogeneous Flow Model
,”
Int. J. Heat Mass Transfer
,
83
, pp.
109
117
.10.1016/j.ijheatmasstransfer.2014.11.080
45.
Dukler
,
A. E.
,
Iii
,
M. W.
, and
Cleveland
,
R. G.
,
1964
, “
Frictional Pressure Drop in Two-Phase Flow: A. A Comparison of Existing Correlations for Pressure Loss and Holdup
,”
AIChE J.
,
10
(
1
), pp.
38
43
.10.1002/aic.690100117
46.
Xu
,
Y.
, and
Fang
,
X.
,
2014
, “
Correlations of Void Fraction for Two-Phase Refrigerant Flow in Pipes
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
242
251
.10.1016/j.applthermaleng.2013.12.032
47.
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2010
, “
An Investigation of a Model of the Flow Pattern Transition Mechanism in Relation to the Identification of Annular Flow of R134a in a Vertical Tube Using Various Void Fraction Models and Flow Regime Maps
,”
Exp. Therm. Fluid Sci.
,
34
(
6
), pp.
692
705
.10.1016/j.expthermflusci.2009.12.011
48.
Cioncolini
,
A.
,
Del Col
,
D.
, and
Thome
,
J. R.
,
2015
, “
An Indirect Criterion for the Laminar to Turbulent Flow Transition in Shear-Driven Annular Liquid Films
,”
Int. J. Multiphase Flow
,
75
, pp.
26
38
.10.1016/j.ijmultiphaseflow.2015.05.002
49.
Powell
,
M.
,
1970
, “
A Hybrid Method for Nonlinear Equations
,”
Numerical Methods for Nonlinear Algebraic Equations
, Gordon and Breach, London, pp.
87
144
.
50.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
51.
More
,
J. J.
,
Garbow
,
B. S.
, and
Hillstrom
,
K. E.
,
1980
, “
User Guide for MINPACK-1
,”
Argonne National Laboratory
, Argonne, IL, Report No. ANL-80-74.
52.
Kuhn
,
S.-Z.
,
1995
, “
Investigation of Heat Transfer From Condensing Steam-Gas Mixtures and Turbulent Films Flowing Downward Inside a Vertical Tube
,” Ph.D. dissertation,
University of Califonia, Berkeley
, CA.
You do not currently have access to this content.