Abstract

A cost-efficient sol–gel method was utilized to synthesize tin-doped copper oxide (Sn–CuO) capillary nanoporous coatings on copper substrates in this study. The micro/nanostructured surfaces exhibited superhydrophilicity and significantly enhanced boiling heat transfer in a confined minichannel environment. Compared to uncoated copper, the coated surfaces showed a substantial reduction in wall superheat at the onset of boiling. High-speed visualization revealed that the Sn-CuO coating facilitated frequent formation and rapid departure of small spherical bubbles, which enhanced liquid replenishment and heat transfer. Among the developed coatings, the Sn-CuO film annealed at 600 °C (Sn–CuO–600) demonstrated the best thermal performance. At a mass flux of 60 kg/m2s, the critical heat flux (CHF) improved by 64.21%, 168.1%, and 203% for coatings annealed at 500 °C, 550 °C, and 600 °C, respectively, compared to bare copper. The highest heat transfer coefficient (HTC) enhancement—up to 235%—was observed with the Sn–CuO–600 coating. The superior performance is attributed to enhanced surface wettability, reduced bubble departure diameter, and shorter bubble residence time, which collectively promote efficient heat removal. This work highlights the potential of integrating superhydrophilic Sn-doped CuO coatings with minichannel flow boiling to significantly improve heat transfer and delay CHF. The results provide valuable insights into the influence of surface micro/nanostructuring on boiling dynamics and support the development of high-performance thermal management solutions for compact electronic and energy systems operating under high heat flux conditions.

References

1.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
142
154
.10.1016/j.ijmultiphaseflow.2008.10.004
2.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks – I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2755
2771
.10.1016/S0017-9310(03)00041-3
3.
Prajapati
,
Y. K.
, and
Bhandari
,
P.
,
2017
, “
Flow Boiling Instabilities in Microchannels and Their Promising Solutions – A Review
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
576
593
.10.1016/j.expthermflusci.2017.07.014
4.
Asadi
,
M.
,
Xie
,
G.
, and
Sunden
,
B.
,
2014
, “
A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
34
53
.10.1016/j.ijheatmasstransfer.2014.07.090
5.
Kharangate
,
C. R.
, and
Mudawar
,
I.
,
2017
, “
Review of Computational Studies on Boiling and Condensation
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1164
1196
.10.1016/j.ijheatmasstransfer.2016.12.065
6.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
,
35
(
4
), pp.
349
362
.10.1016/j.ijmultiphaseflow.2009.01.003
7.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
10–11
), pp.
2045
2059
.10.1016/j.ijheatmasstransfer.2003.12.006
8.
Baduge
,
S.
,
Kaminaga
,
F.
, and
Matsumura
,
K.
,
2003
, “
Saturated Flow Boiling of Water in a Vertical Small Diameter Tube
,”
Exp. Therm. Fluid Sci.
,
27
(
7
), pp.
789
801
.10.1016/S0894-1777(02)00317-5
9.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
10.
Sujith Kumar
,
C. S.
,
Udaya Kumar
,
G.
,
Mata Arenales
,
M. R.
,
Hsu
,
C.-C.
,
Suresh
,
S.
, and
Chen
,
P.-H.
,
2018
, “
Elucidating the Mechanisms Behind the Boiling Heat Transfer Enhancement Using Nano-Structured Surface Coatings
,”
Appl. Therm. Eng.
,
137
, pp.
868
891
.10.1016/j.applthermaleng.2018.03.092
11.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.10.1016/j.expthermflusci.2014.12.016
12.
Sun
,
Y.
,
Zhang
,
L.
,
Xu
,
H.
, and
Zhong
,
X.
,
2011
, “
Flow Boiling Enhancement of FC-72 From Microporous Surfaces in Minichannels
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1418
1426
.10.1016/j.expthermflusci.2011.05.010
13.
Morshed
,
A. K. M. M.
,
Yang
,
F.
,
Ali
,
M. Y.
,
Khan
,
J. A.
, and
Li
,
C.
,
2012
, “
Enhanced Flow Boiling in a Microchannel With Integration of Nanowires
,”
Appl. Therm. Eng.
,
32
, pp.
68
75
.10.1016/j.applthermaleng.2011.08.031
14.
Li
,
D.
,
Wu
,
G. S.
,
Wang
,
W.
,
Wang
,
Y. D.
,
Liu
,
D.
,
Zhang
,
D. C.
,
Chen
,
Y. F.
,
Peterson
,
G. P.
, and
Yang
,
R.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
.10.1021/nl300049f
15.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2012
, “
Flow Boiling of Water on Nanocoated Surfaces in a Microchannel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
2
), p.
020901
.10.1115/1.4004935
16.
Sujith Kumar
,
C. S.
,
Suresh
,
S.
,
Yang
,
L.
,
Yang
,
Q.
, and
Aravind
,
S.
,
2014
, “
Flow Boiling Heat Transfer Enhancement Using Carbon Nanotube Coatings
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
166
175
.10.1016/j.applthermaleng.2013.12.053
17.
Lin
,
Y.
,
Luo
,
Y.
,
Li
,
J.
, and
Li
,
W.
,
2021
, “
Heat Transfer, Pressure Drop and Flow Patterns of Flow Boiling on Heterogeneous Wetting Surface in a Vertical Narrow Microchannel
,”
Int. J. Heat Mass Transfer
,
172
, p.
121158
.10.1016/j.ijheatmasstransfer.2021.121158
18.
Chen
,
R.
,
Lu
,
M.-C.
,
Srinivasan
,
V.
,
Wang
,
Z.
,
Cho
,
H. H.
, and
Majumdar
,
A.
,
2009
, “
Nanowires for Enhanced Boiling Heat Transfer
,”
Nano Lett.
,
9
(
2
), pp.
548
553
.10.1021/nl8026857
19.
Shen
,
J.
,
Graber
,
C.
,
Liburdy
,
J.
,
Pence
,
D.
, and
Narayanan
,
V.
,
2010
, “
Simultaneous Droplet Impingement Dynamics and Heat Transfer on Nano-Structured Surfaces
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
496
503
.10.1016/j.expthermflusci.2009.02.003
20.
Cao
,
X. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
,
2002
, “
Experimental Study of Evaporative Heat Transfer in Sintered Copper Bidispersed Wick Structures
,”
J. Thermophys. Heat Transfer
,
16
(
4
), pp.
547
552
.10.2514/2.6730
21.
Ćoso
,
D.
,
Srinivasan
,
V.
,
Lo
,
M.-C.
,
Chang
,
J.-Y.
, and
Majumdar
,
A.
,
2012
, “
Enhanced Heat Transfer in Biporous Wicks in the Thin Liquid Film Evaporation and Boiling Regimes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
10
), p.
101501
.10.1115/1.4006106
22.
Betz
,
A. R.
,
Xu
,
J.
,
Qiu
,
H.
, and
Attinger
,
D.
,
2010
, “
Do Surfaces With Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling?
,”
Appl. Phys. Lett.
,
97
(
14
), p.
141909
.10.1063/1.3485057
23.
Wang
,
X.
,
Zhao
,
S.
,
Wang
,
H.
, and
Pan
,
T.
,
2012
, “
Bubble Formation on Superhydrophobic-Micropatterned Copper Surfaces
,”
Appl. Therm. Eng.
,
35
, pp.
112
119
.10.1016/j.applthermaleng.2011.10.012
24.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2021
, “
Flow Boiling Heat Transfer Performance of Copper-Alumina Micro-Nanostructured Surfaces Developed by Forced Convection Electrodeposition Technique
,”
Chem. Eng. Process. Process Intensif.
,
164
, p.
108408
.10.1016/j.cep.2021.108408
25.
Gupta
,
S. K.
, and
Misra
,
R. D.
,
2018
, “
An Experimental Investigation on Flow Boiling Heat Transfer Enhancement Using Cu-TiO2 Nanocomposite Coating on Copper Substrate
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
406
419
.10.1016/j.expthermflusci.2018.06.012
26.
Gupta
,
S. K.
,
2024
, “
Experimental Subcooled Flow Boiling Instability and Heat Transfer Analysis Through Zinc Oxide Coated Copper Hybrid Nanofluid Boiling on the Structured Microchannels
,”
Chem. Eng. Process. Process Intensif.
,
197
, p.
109691
.10.1016/j.cep.2024.109691
27.
Schultz
,
R.
, and
Cole
,
R.
,
1979
, “
Uncertainty Analysis in Boiling Nucleation
,”
AIChE Symp. Ser.
,
75
, pp.
32
38
.http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail…idt=PASCAL8070159748
28.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.10.1016/0017-9310(86)90205-X
29.
Kenning
,
D. B. R.
, and
Cooper
,
M. G.
,
1989
, “
Saturated Flow Boiling of Water in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
32
(
3
), pp.
445
458
.10.1016/0017-9310(89)90132-4
30.
Griffith
,
P.
, and
Walls
,
J. D.
,
1958
, “
The Role of Surface Conditions in Nucleate Boiling
,”
Office of Naval Research
,
Arlington, VA
, Report No. 14, pp.
1
16
.https://dspace.mit.edu/bitstream/handle/1721.1/61453/HTL_TR_1958_014.pdf?sequence=1…isAllowed=y
You do not currently have access to this content.