Abstract

Recently, Jain [ASME J. Heat Mass Transfer, 220 (2024)] provided spreading-resistance formulas for an isothermal source on compound, orthotropic, semi-infinite, two-dimensional (axisymmetric) flux channels (tubes). The boundary condition (BC) in the source plane was a discontinuous convection (Robin) one. Along the source, a sufficiently large heat transfer coefficient was imposed to approximate an isothermal condition; elsewhere, it was set to zero, imposing an adiabatic BC. An eigenfunction expansion resolved the problem. Distinctly, we impose, precisely, a mixed isothermal-adiabatic BC in the source plane and use conformal maps to resolve the spreading resistance for the limiting case of a compound, isotropic flux channel. Our complimentary approach requires more time to compute the spreading resistance. However, it converges uniformly rather than pointwise, converges to the exact spreading resistance rather than one with an error, eliminates the Gibbs phenomenon at the edges of the source and fully resolves the square-root singularities in heat flux as the discontinuity in the BC is approached.

References

1.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2023
,
Thermal Spreading and Contact Resistance: Fundamentals and Applications
,
Wiley
, Hoboken, NJ.
2.
Lee
,
S.
, Song, S., Au, V., and Moran, K.,
1995
, “
Constriction/Spreading Resistance Model for Electronics Packaging
,”
ASME/JSME Thermal Engineering Conference
, Maui, HI, Mar. 19–24, pp. 1–8.https://file.elecfans.com/web1/M00/20/C0/ooYBAFmk1LSAMH2xAAOv1ilC3UE457.pdf
3.
Sauciuc
,
I.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Prasher
,
R.
,
2002
, “
Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals
,”
IEEE Trans. Comp. Packg. Technol.
,
25
(
4
), pp.
621
628
.10.1109/TCAPT.2002.807994
4.
Mayer
,
M.
,
Hodes
,
M.
,
Kirk
,
T.
, and
Crowdy
,
D.
,
2019
, “
Effect of Surface Curvature on Contact Resistance Between Cylinders
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
3
), p.
032002
.10.1115/1.4042441
5.
Hodes
,
M.
,
Kirk
,
T.
, and
Crowdy
,
D.
,
2018
, “
Spreading and Contact Resistance Formulae Capturing Boundary Curvature and Contact Distribution Effects
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
10
), p.
104503
.10.1115/1.4039993
6.
Enright
,
R.
,
Hodes
,
M.
,
Salamon
,
T.
, and
Muzychka
,
Y.
,
2014
, “
Isoflux Nusselt Number and Slip Length Formulae for Superhydrophobic Microchannels
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
1
), p.
012402
.10.1115/1.4024837
7.
Bagnall
,
K. R.
,
Muzychka
,
Y. S.
, and
Wang
,
E. N.
,
2014
, “
Analytical Solution for Temperature Rise in Complex Multilayer Structures With Discrete Heat Sources
,”
IEEE Trans. Compon., Packg. Manuf. Technol.
,
4
(
5
), pp.
817
830
.10.1109/TCPMT.2014.2299766
8.
Smythe
,
W. B.
,
1939
,
Static and Dynamic Electricity
,
McGraw-Hill
, New York.
9.
Kouwenhoven
,
W.
, and
Sackett
,
W.
,
1949
, “
Electrical Resistance Offered to Non-Uniform Current Flow
,”
Weld. J. Res. Suppl.
, pp. 466--470.
10.
Mikic
,
B. B.
,
1967
, “
Thermal Contact Resistance
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA.
11.
Kouwenhoven
,
W.
, and
Sackett
,
W.
,
1950
, “
The Spreading Resistance of Contacts
,”
Weld. J.
,
29
(
10
), p.
512
.
12.
Muratov
,
C. B.
, and
Shvartsman
,
S. Y.
,
2008
, “
Boundary Homogenization for Periodic Arrays of Absorbers
,”
Multiscale Model. Simul.
,
7
(
1
), pp.
44
61
.10.1137/070692832
13.
Moizhes
,
B.
,
1955
, “
Elektrostaticheskie Usrednennye Granichnye Usloviya Dlya Metallicheskikh Setok
,”
Z. Tekhn. Fiziki
,
25
(
1
), pp.
167
176
.
14.
Hodes
,
M.
,
Kane
,
D.
,
Bazant
,
M. Z.
, and
Kirk
,
T. L.
,
2023
, “
Asymptotic Nusselt Numbers for Internal Flow in the Cassie State
,”
J. Fluid Mech.
,
977
, p.
A18
.10.1017/jfm.2023.883
15.
Li
,
Z.-C.
, and
Lu
,
T.-T.
,
2000
, “
Singularities and Treatments of Elliptic Boundary Value Problems
,”
Math. Comput. Modell.
,
31
(
8–9
), pp.
97
145
.10.1016/S0895-7177(00)00062-5
16.
Veziroglu
,
T.
, and
Chandra
,
S.
,
1968
, “
Thermal Conductance of Two Dimensional Constrictions Interim Report
,” NASA Technical Reports, Washington, DC, Report No.
NASA-CR-92574
.https://ntrs.nasa.gov/api/citations/19680006403/downloads/19680006403.pdf
17.
Veziroglu
,
T. N.
, and
Huerta
,
M. A.
,
1968
, “
Thermal Conductance of Two-Dimensional Eccentric Constrictions
,” Mechanical Engineering Department, University of Miami, Coral Gables, FL, NASA Report No.
NGR 10-007-010-SUB3
.https://ntrs.nasa.gov/api/citations/19680023502/downloads/19680023502.pdf
18.
Sexl
,
R.
, and
Burkhard
,
D.
,
1969
, “
An Exact Solution for Thermal Conduction Through a Two-Dimensional Eccentric Constriction
,”
AIAA
Paper No. 617-0620.10.2514/5.9781600864957.0617.0620
19.
Philip
,
J. R.
,
1972
, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Angew. Math. Phys. ZAMP
,
23
(
3
), pp.
353
372
.10.1007/BF01595477
20.
Philip
,
J. R.
,
1972
, “
Integral Properties of Flows Satisfying Mixed no-Slip and no-Shear Conditions
,”
Z. Angew. Math. Phys. ZAMP
,
23
(
6
), pp.
960
968
.10.1007/BF01596223
21.
Palaparthi
,
R.
,
Papageorgiou
,
D. T.
, and
Maldarelli
,
C.
,
2006
, “
Theory and Experiments on the Stagnant Cap Regime in the Motion of Spherical Surfactant-Laden Bubbles
,”
J. Fluid Mech.
,
559
, pp.
1
44
.10.1017/S0022112005007019
22.
Peaudecerf
,
F. J.
,
Landel
,
J. R.
,
Goldstein
,
R. E.
, and
Luzzatto-Fegiz
,
P.
,
2017
, “
Traces of Surfactants Can Severely Limit the Drag Reduction of Superhydrophobic Surfaces
,”
Proc. Natl. Acad. Sci.
,
114
(
28
), pp.
7254
7259
.10.1073/pnas.1702469114
23.
Crowdy
,
D. G.
,
2017
, “
Effective Slip Lengths for Immobilized Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
825
, p.
R2
.10.1017/jfm.2017.461
24.
Schnitzer
,
O.
,
2017
, “
Slip Length for Longitudinal Shear Flow Over an Arbitrary-Protrusion-Angle Bubble Mattress: The Small-Solid-Fraction Singularity
,”
J. Fluid Mech.
,
820
, pp.
580
603
.10.1017/jfm.2017.224
25.
Crowdy
,
D. G.
,
2016
, “
Analytical Formulae for Longitudinal Slip Lengths Over Unidirectional Superhydrophobic Surfaces With Curved Menisci
,”
J. Fluid Mech.
,
791
, p.
R7
.10.1017/jfm.2016.88
26.
Crowdy
,
D.
,
2011
, “
Frictional Slip Lengths for Unidirectional Superhydrophobic Grooved Surfaces
,”
Phys. Fluids
,
23
(
7
), p .072001.10.1063/1.3605575
27.
Mayer
,
M.
,
Kirk
,
T.
,
Hodes
,
M.
, and
Crowdy
,
D.
,
2025
, “
Mechanical Power From Thermocapillarity on Superhydrophobic Surfaces
,”
J. Fluid Mech.
, 1009, pp. A33-1--A33-18.10.1017/jfm.2025.188
28.
Steigerwalt Lam
,
L.
,
Hodes
,
M.
,
Karamanis
,
G.
,
Kirk
,
T.
, and
MacLachlan
,
S.
,
2016
, “
Effect of Meniscus Curvature on Apparent Thermal Slip
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
12
), p.
122004
.10.1115/1.4034189
29.
Jain
,
A.
,
2024
, “
Thermal Spreading/Constriction From an Isothermal Source Into a Multilayer Orthotropic Semi-Infinite Flux Tube
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
6
), p.
061401
.10.1115/1.4064831
30.
Muzychka
,
Y.
,
2014
, “
Spreading Resistance in Compound Orthotropic Flux Tubes and Channels With Interfacial Resistance
,”
J. Thermophys. Heat Transfer
,
28
(
2
), pp.
313
319
.10.2514/1.T4203
31.
Lambert
,
M.
, and
Fletcher
,
L.
,
2002
, “
Thermal Contact Conductance of Non-Flat, Rough, Metallic Coated Metals
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
3
), pp.
405
412
.10.1115/1.1464565
32.
Kang
,
T. K.
,
Peterson
,
G. P.
, and
Fletcher
,
L.
,
1990
, “
Effect of Metallic Coatings on the Thermal Contact Conductance of Turned Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
112
(
4
), pp.
864
871
.10.1115/1.2910493
33.
Miyoshi
,
H.
, and
Crowdy
,
D. G.
,
2023
, “
Generalized Schwarz Integral Formulas for Multiply Connected Domains
,”
SIAM J. Appl. Math.
,
83
(
3
), pp.
966
984
.10.1137/22M1506419
34.
Miyoshi
,
H.
,
Rodriguez-Broadbent
,
H.
, and
Crowdy
,
D. G.
,
2024
, “
Numerical Validation of Analytical Formulas for Channel Flows Over Liquid-Infused Surfaces
,”
J. Eng. Math.
,
144
(
1
), p.
14
.10.1007/s10665-023-10314-2
35.
Github, 2025, “Applied and Computational Complex Analysis Group,” Github, San Francisco, CA, accessed May 19, 2025
, https://github.com/ACCA-Imperial
36.
Crowdy
,
D.
,
2020
,
Solving Problems in Multiply Connected Domains
,
SIAM
, Philadelphia, PA.
37.
Miyoshi
,
H.
,
Rodriguez-Broadbent
,
H.
,
Curran
,
A.
, and
Crowdy
,
D.
,
2022
, “
Longitudinal Flow in Superhydrophobic Channels With Partially Invaded Grooves
,”
J. Eng. Math.
,
137
(
1
), pp.
1
17
.10.1007/s10665-022-10240-9
38.
Gottlieb
,
D.
, and
Shu
,
C.-W.
,
1997
, “
On the Gibbs Phenomenon and Its Resolution
,”
SIAM Rev.
,
39
(
4
), pp.
644
668
.10.1137/S0036144596301390
39.
Inc
,
T. M.
,
2024
, “
Partial Differential Equation Toolbox: 24.1 (r2024a)
,” The MathWorks, Inc., Natick, MA.
40.
COMSOL Multiphysics
,
1998
,
Introduction to Comsol Multiphysics®
, Vol.
9
,
COMSOL Multiphysics
,
Burlington, MA
, p.
2018
.
41.
Game
,
S.
,
Hodes
,
M.
,
Keaveny
,
E.
, and
Papageorgiou
,
D.
,
2017
, “
Physical Mechanisms Relevant to Flow Resistance in Textured Microchannels
,”
Phys. Rev. Fluids
,
2
(
9
), p.
094102
.10.1103/PhysRevFluids.2.094102
42.
Ablowitz
,
M. J.
, and
Fokas
,
A. S.
,
2003
,
Complex Variables: Introduction and Applications
,
Cambridge University Press
, Shaftesbury Road, Cambridge, UK.
43.
Crowdy
,
D.
,
Kropf
,
E.
,
Green
,
C.
, and
Nasser
,
M.
,
2016
, “
The Schottky–Klein Prime Function: A Theoretical and Computational Tool for Applications
,”
IMA J. Appl. Math.
,
81
(
3
), pp.
589
628
.10.1093/imamat/hxw028
44.
Crowdy
,
D. G.
, and
Marshall
,
J. S.
,
2007
, “
Computing the Schottky-Klein Prime Function on the Schottky Double of Planar Domains
,”
Comput. Methods Funct. Theory
,
7
(
1
), pp.
293
308
.10.1007/BF03321646
45.
Miyoshi
,
H.
, and
Crowdy
,
D. G.
,
2023
, “
Estimating Conformal Capacity Using Asymptotic Matching
,”
IMA J. Appl. Math.
,
88
(
3
), pp.
472
497
.10.1093/imamat/hxad018
You do not currently have access to this content.