Abstract

The present work comprehensively investigates conjugate heat transfer in a vertically oriented torus through numerical analysis using Ansys Fluent. A solid torus made of aluminum, having a constant surface temperature of 450 K, is allowed to cool using ambient air, whose temperature is 300 K. The combined influence of free convection and radiation heat transfer has been considered here. Independent parameters such as Aspect Ratio (D/d) of 2.5,5,7.5; Rayleigh number for the laminar regime in the range of 103–107 and surface emissivity ranging from 0 to 1 have been selected for the numerical study. Continuity, Momentum, Energy, and Radiation Equations were solved numerically using finite volume method (FVM). Due to the high temperature difference between the ambient air temperature and torus surface (150 K), the thermo-physical properties of the fluid were calculated using a polynomial function of temperature to achieve more accurate results. It has been observed that each parameter has a substantial impact on the overall heat transfer and also, at a higher Rayleigh number of 107 and with an increase in emissivity, both radiation and convection have a considerable role in the overall heat transfer. Temperature and velocity contours have been plotted to visualize the consequences of the parameters on overall heat transfer. Using a nonlinear regression model of the obtained results, a correlation for the overall Nusselt number has been formulated, which can be beneficial to industrial engineers.

References

1.
Jiang
,
Y. Y.
,
Shoji
,
M.
, and
Naruse
,
M.
,
2002
, “
Boundary Condition Effects on the Flow Stability in a Toroidal Thermosyphon
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
81
91
.10.1016/S0142-727X(01)00141-2
2.
Dastjerdi
,
S.
,
Akgöz
,
B.
,
Civalek
,
Ö.
,
Malikan
,
M.
, and
Eremeyev
,
V. A.
,
2020
, “
On the Non-Linear Dynamics of Torus-Shaped and Cylindrical Shell Structures
,”
Int. J. Eng. Sci.
,
156
, p.
103371
.10.1016/j.ijengsci.2020.103371
3.
Shin
,
D.-H.
,
Lee
,
D.-G.
, and
Chung
,
B.-J.
,
2023
, “
Measurements of Natural Convective Heat Transfer of the Inclined Torus
,”
Int. J. Heat Mass Transfer
,
217
, p.
124729
.10.1016/j.ijheatmasstransfer.2023.124729
4.
Liu
,
H.
,
Todreas
,
N. E.
, and
Driscoll
,
M. J.
,
2000
, “
An Experimental Investigation of a Passive Cooling Unit for Nuclear Plant Containment
,”
Nucl. Eng. Des.
,
199
(
3
), pp.
243
255
.10.1016/S0029-5493(00)00229-6
5.
Jang
,
D.
,
Park
,
S.-J.
,
Yook
,
S.-J.
, and
Lee
,
K.-S.
,
2014
, “
The Orientation Effect for Cylindrical Heat Sinks With Application to LED Light Bulbs
,”
Int. J. Heat Mass Transfer
,
71
, pp.
496
502
.10.1016/j.ijheatmasstransfer.2013.12.037
6.
Kwon
,
H.
,
Joo
,
Y.
, and
Kim
,
S. J.
,
2018
, “
Analytic Approach to Thermal Optimization of Horizontally Oriented Radial Plate-Fin Heat Sinks in Natural Convection
,”
Energy Convers. Manage.
,
156
, pp.
555
567
.10.1016/j.enconman.2017.11.076
7.
McGlen
,
R. J.
,
Jachuck
,
R.
, and
Lin
,
S.
,
2004
, “
Integrated Thermal Management Techniques for High Power Electronic Devices
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1143
1156
.10.1016/j.applthermaleng.2003.12.029
8.
Barik
,
A. K.
,
Dash
,
S. K.
,
Patro
,
P.
, and
Mohapatra
,
S.
,
2014
, “
Experimental and Numerical Investigation of Air Entrainment Into a Louvred Funnel
,”
Appl. Ocean Res.
,
48
, pp.
176
185
.10.1016/j.apor.2014.08.009
9.
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2020
, “
Numerical Investigation of Flow and Heat Transfer Characteristics of a Full-Scale Infrared Suppression Device With Cylindrical Funnels
,”
Int. J. Therm. Sci.
,
153
, p.
106355
.10.1016/j.ijthermalsci.2020.106355
10.
Abdul Ghani
,
A. G.
,
Farid
,
M. M.
,
Chen
,
X. D.
, and
Richards
,
P.
,
1999
, “
Numerical Simulation of Natural Convection Heating of Canned Food by Computational Fluid Dynamics
,”
J. Food Eng.
,
41
(
1
), pp.
55
64
.10.1016/S0260-8774(99)00073-4
11.
Aihara
,
T.
, and
Saito
,
E.
,
1972
, “
Measurement of Free Convection Velocity Field Around the Periphery of a Horizontal Torus
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
94
(
1
), pp.
95
98
.10.1115/1.3449879
12.
Lavine
,
A. S.
,
Greif
,
R.
, and
Humphrey
,
J. A. C.
,
1986
, “
Three-Dimensional Analysis of Natural Convection in a Toroidal Loop: Effect of Tilt Angle
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
108
(
4
), pp.
796
805
.10.1115/1.3247015
13.
Sano
,
O.
,
1988
, “
Effect of Asymmetry on the Steady Thermal Convection in a Vertical Torus
,”
J. Phys. Soc. Jpn.
,
57
(
5
), pp.
1662
1668
.10.1143/JPSJ.57.1662
14.
Stern
,
C. H.
,
Greif
,
R.
, and
Humphrey
,
J. A. C.
,
1988
, “
An Experimental Study of Natural Convection in a Toroidal Loop
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
110
(
4a
), pp.
877
884
.10.1115/1.3250588
15.
Noskov
,
V.
,
Stepanov
,
R.
,
Denisov
,
S.
,
Frick
,
P.
,
Verhille
,
G.
,
Plihon
,
N.
, and
Pinton
,
J.-F.
,
2009
, “
Dynamics of a Turbulent Spin-Down Flow Inside a Torus
,”
Phys. Fluids
,
21
(
4
), p.
045108
.10.1063/1.3123529
16.
Ridouane
,
E. H.
,
Danforth
,
C. M.
, and
Hitt
,
D. L.
,
2010
, “
A 2-D Numerical Study of Chaotic Flow in a Natural Convection Loop
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
76
84
.10.1016/j.ijheatmasstransfer.2009.10.003
17.
Moshkin
,
N. P.
,
Sompong
,
J.
, and
Suwannasri
,
P.
,
2013
, “
Numerical Study of Flow and Heat Transfer From a Torus Placed in a Uniform Flow
,”
J. Eng. Thermophys.
,
22
(
2
), pp.
122
133
.10.1134/S1810232813020045
18.
Louisos
,
W. F.
,
Hitt
,
D. L.
, and
Danforth
,
C. M.
,
2015
, “
Chaotic Natural Convection in a Toroidal Thermosyphon With Heat Flux Boundaries
,”
Int. J. Heat Mass Transfer
,
88
, pp.
492
507
.10.1016/j.ijheatmasstransfer.2015.04.060
19.
Ridouane
,
E. H.
,
Hitt
,
D. L.
, and
Danforth
,
C. M.
,
2011
, “
A Numerical Investigation of 3-D Flow Regimes in a Toroidal Natural Convection Loop
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5253
5261
.10.1016/j.ijheatmasstransfer.2011.08.017
20.
Zeitoun
,
O.
,
2014
, “
Numerical Modeling of Natural Convection Heat Transfer From a Horizontal Torus
,”
Numer. Heat Transfer, Part A
,
65
(
9
), pp.
911
930
.10.1080/10407782.2013.875796
21.
Raut
,
H. S.
,
Bhattacharya
,
A.
, and
Sharma
,
A.
,
2022
, “
Computational Multifluid-Structure Interaction Study on Nucleate Boiling Under the Effect of Stationary or Oscillating Torus
,”
Int. J. Heat Mass Transfer
,
193
, p.
122995
.10.1016/j.ijheatmasstransfer.2022.122995
22.
Plouraboué
,
F.
,
Rudkiewicz
,
M.
,
David
,
F.
,
Neau
,
H.
, and
Debenest
,
G.
,
2024
, “
Natural Convective Loops Heat Transfer Scaling Analysis
,”
Int. J. Heat Mass Transfer
,
218
, p.
124743
.10.1016/j.ijheatmasstransfer.2023.124743
23.
Heo
,
J. H.
, and
Chung
,
B. J.
,
2012
, “
Natural Convection Heat Transfer on the Outer Surface of Inclined Cylinders
,”
Chem. Eng. Sci.
,
73
, pp.
366
372
.10.1016/j.ces.2012.02.012
24.
Day
,
J. C.
,
Zemler
,
M. K.
,
Traum
,
M. J.
, and
Boetcher
,
S. K. S.
,
2013
, “
Laminar Natural Convection From Isothermal Vertical Cylinders: Revisiting a Classical Subject
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
2
), p.
022505
.10.1115/1.4007421
25.
Acharya
,
S.
,
Agrawal
,
S.
, and
Dash
,
S. K.
,
2018
, “
Numerical Analysis of Natural Convection Heat Transfer From a Vertical Hollow Cylinder Suspended in Air
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
5
), p.
052501
.10.1115/1.4038478
26.
Kumar
,
A.
,
Barik
,
A. K.
, and
Sinha
,
M. K.
,
2025
, “
Natural Convection From Solid and Hollow Cylinders With Concave Surface: A Numerical Approach
,”
Numer. Heat Transfer, Part A
,
86
(
2
), pp.
236
258
.10.1080/10407782.2023.2261147
27.
Mohamad
,
S.
,
Rout
,
S. K.
,
Senapati
,
J. R.
, and
Sarangi
,
S. K.
,
2022
, “
Entropy Generation Analysis and Cooling Time Estimation of a Blast Furnace in Natural Convection Environment
,”
Numer. Heat Transfer, Part A
,
82
(
10
), pp.
666
681
.10.1080/10407782.2022.2083861
28.
Mohamad
,
S.
,
Rout
,
S. K.
,
Senapati
,
J. R.
, and
Sarangi
,
S. K.
,
2023
, “
Numerical Investigation of Conjugate Natural Convection From a Vertical Cylindrical Open Cavity
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
8
), p.
082601
.10.1115/1.4062428
29.
Mohamad
,
S.
,
Rout
,
S. K.
,
Senapati
,
J. R.
, and
Sarangi
,
S. K.
,
2023
, “
Entropy Formation Due to Conjugate Natural Convection in a Cylindrical Open Cavity Under Isothermal Boundary Condition at Inner Wall
,”
J. Therm. Anal. Calorim.
,
148
(
24
), pp.
13913
13927
.10.1007/s10973-023-12590-7
30.
Pulagam
,
M. K. R.
,
Mohamad
,
S.
,
Rout
,
S. K.
, and
Senapati
,
J. R.
,
2024
, “
Free Convection From a One End Closed Vertical Pipe With Annular Fins: A Computational Study
,”
J. Comput. Appl. Mech.
,
55
, pp.
589
604
.10.22059/jcamech.2024.374007.1004
31.
Chandrakar
,
V.
,
Senapati
,
J. R.
, and
Mohanty
,
A.
,
2021
, “
Conjugate Heat Transfer Due to Conduction, Natural Convection, and Radiation From a Vertical Hollow Cylinder With Finite Thickness
,”
Numer. Heat Transfer, Part A
,
79
(
6
), pp.
463
487
.10.1080/10407782.2020.1847524
32.
Behera
,
S.
, and
Dash
,
S. K.
,
2021
, “
Shape and Orientation Effect on Natural Convection Around a Heated Vertical Cone, Which Loses Heat From All Its Surfaces
,”
Arab. J. Sci. Eng.
,
46
(
12
), pp.
11615
11631
.10.1007/s13369-021-05546-2
33.
Lee
,
D.-Y.
, and
Chung
,
B.-J.
,
2017
, “
Visualization of Natural Convection Heat Transfer on a Sphere
,”
Heat Mass Transfer
,
53
(
12
), pp.
3613
3620
.10.1007/s00231-017-2097-1
34.
Behera
,
B. R.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2021
, “
Free Convection Heat Transfer From a Concave Hemispherical Surface: A Numerical Exercise
,”
Int. Commun. Heat Mass Transfer
,
125
, p.
105324
.10.1016/j.icheatmasstransfer.2021.105324
35.
Ranjan Behera
,
B.
,
Chandrakar
,
V.
, and
Senapati
,
J. R.
,
2023
, “
Numerical Analysis of Combined Free Convection and Radiation Heat Transfer From an Open Hemispherical Cavity
,”
Numer. Heat Transfer, Part A
,
84
(
9
), pp.
1014
1031
.10.1080/10407782.2023.2169797
36.
Shin
,
D.-H.
,
Park
,
H.-K.
, and
Chung
,
B.-J.
,
2023
, “
Measurements of Natural Convection Heat Transfer of a Helical Coil Varying the Pitch and the Turn
,”
Exp. Therm. Fluid Sci.
,
146
, p.
110921
.10.1016/j.expthermflusci.2023.110921
37.
Biswal
,
G.
, and
Dash
,
S. K.
,
2024
, “
Numerical Investigation of Unsteady Heat Transfer From a Vertical Helical Coil
,”
Appl. Therm. Eng.
,
245
, p.
122872
.10.1016/j.applthermaleng.2024.122872
38.
Biswal
,
G.
,
Rath
,
S.
, and
Dash
,
S. K.
,
2023
, “
Natural Convection and Radiative Heat Transfer From Constant Surface Area Vertical Helical Coils: Effect of Pitch and Height
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
3
), p.
031005
.10.1115/1.4056244
39.
Biswal
,
G.
, and
Kumar Dash
,
S.
,
2024
, “
Thermal Analysis of Constant Surface Area Tapered Helical Coils: Insights From Numerical Modelling
,”
Therm. Sci. Eng. Prog.
,
54
, p.
102822
.10.1016/j.tsep.2024.102822
40.
Biswal
,
G.
, and
Dash
,
S. K.
,
2023
, “
An Isothermal Constant Surface Area Horizontal Helical Coil Under Natural Convection and Radiative Heat Loss: A CFD Study
,”
Int. Commun. Heat Mass Transfer
,
145
, p.
106846
.10.1016/j.icheatmasstransfer.2023.106846
41.
Ranjan
,
K.
,
Biswal
,
G.
,
Rout
,
S. K.
,
Hussein
,
A. K.
,
Eladeb
,
A.
,
Alshammari
,
B. M.
, and
Kolsi
,
L.
,
2025
, “
Optimization of Heat Transfer in a Solid Torus: A Parametric and Numerical Approach Under Natural Convection
,”
Case Stud. Therm. Eng.
,
65
, p.
105680
.10.1016/j.csite.2024.105680
42.
Yovanovich
,
M. M.
,
Culham
,
J. R.
, and
Lee
,
S.
,
1997
, “
Natural Convection From Horizontal Circular and Square Toroids and Equivalent Cylinders
,”
J. Thermophys. Heat Transfer
,
11
(
3
), pp.
415
422
.10.2514/2.6256
43.
Fluent A
,
2013
,
15.0 User Guide
,
ANSYS Inc
.,
South Pointe, Canonsburg
.
44.
Biswal
,
G.
,
Rath
,
S.
, and
Dash
,
S. K.
,
2023
, “
Natural Convection and Radiative Heat Transfer From Constant Surface Area Vertical Helical Coils: Effect of Pitch and Diameter
,”
Int. Commun. Heat Mass Transfer
,
141
, p.
106578
.10.1016/j.icheatmasstransfer.2022.106578
45.
Hawkins
,
G. A.
,
1954
,
Heat Transmission
, 3rd ed.,
W. H.
McAdams
, ed.,
McGraw-Hill
,
New York, London
, pp.
984
984
.
46.
Churchill
,
S. W.
,
1977
, “
A Comprehensive Correlating Equation for Laminar, Assisting, Forced and Free Convection
,”
AIChE J.
,
23
(
1
), pp.
10
16
.10.1002/aic.690230103
You do not currently have access to this content.