Abstract

This work provides the temperature dependence of the thermal conductivities of ethylene glycol, propylene glycol, and glycerol. The experimental results are obtained using the transient hot-wire method over a temperature range of 235–350 K, depending on the liquid, and under atmospheric pressure conditions. A consistent data reduction technique minimizes the influence of buoyancy-induced convection on the experimental results. A reliable correlation of thermal conductivity values with the temperature of each liquid is provided. Additional insights into the experimental methods are obtained using numerical simulations. The velocity and temperature field induced by the measurement process are computed to understand their impact on the measured thermal conductivity. The experimental and computed results are compared to evaluate the assumptions of the transient hot-wire method.

References

1.
Nieto de Castro
,
C.
,
Li
,
S.
,
Nagashima
,
A.
,
Trengove
,
R.
, and
Wakeham
,
W.
,
1986
, “
Standard Reference Data for the Thermal Conductivity of Liquids
,”
J. Phys. Chem. Ref. Data
,
15
(
3
), pp.
1073
1086
.10.1063/1.555758
2.
Curme
,
G. O.
, and
Young
,
C. O.
,
1925
, “
Ethylene Glycol
,”
Ind. Eng. Chem.
,
17
(
11
), pp.
1117
1120
.10.1021/ie50191a006
3.
DiGuilio
,
R.
, and
Teja
,
A. S.
,
1990
, “
Thermal Conductivity of Poly(Ethylene Glycols) and Their Binary Mixtures
,”
J. Chem. Eng. Data
,
35
(
2
), pp.
117
121
.10.1021/je00060a005
4.
Azarfar
,
S.
,
Movahedirad
,
S.
,
Sarbanha
,
A. A.
,
Norouzbeigi
,
R.
, and
Beigzadeh
,
B.
,
2016
, “
Low Cost and New Design of Transient Hot-Wire Technique for the Thermal Conductivity Measurement of Fluids
,”
Appl. Therm. Eng.
,
105
, pp.
142
150
.10.1016/j.applthermaleng.2016.05.138
5.
LaKind
,
J. S.
,
McKenna
,
E. A.
,
Hubner
,
R. P.
, and
Tardiff
,
R. G.
,
1999
, “
A Review of the Comparative Mammalian Toxicity of Ethylene Glycol and Propylene Glycol
,”
Crit. Rev. Toxicol.
,
29
(
4
), pp.
331
365
.10.1080/10408449991349230
6.
Sun
,
T.
, and
Teja
,
A. S.
,
2004
, “
Density, Viscosity and Thermal Conductivity of Aqueous Solutions of Propylene Glycol, Dipropylene Glycol, and Tripropylene Glycol Between 290 K and 460 K
,”
J. Chem. Eng. Data
,
49
(
5
), pp.
1311
1317
.10.1021/je049960h
7.
Deng
,
C.
, and
Zhang
,
K.
,
2021
, “
Thermal Conductivity of 1,2-Ethanediol and 1,2-Propanediol Binary Aqueous Solutions at Temperature From 253 K to 373 K
,”
Int. J. Thermophys.
,
42
(
6
), p.
81
.10.1007/s10765-021-02837-6
8.
Hudgens
,
R. D.
,
Hercamp
,
R. D.
,
Francis
,
J.
,
Nyman
,
D. A.
, and
Bartoli
,
Y.
,
2007
, “
An Evaluation of Glycerin (Glycerol) as a Heavy Duty Engine Antifreeze/Coolant Base
,” SAE Technical Paper No. 2007-01-4000.10.4271/2007-01-4000
9.
Quispe
,
C. A. G.
,
Coronado
,
C. J. R.
, and
Carvalho
,
J. A.
, Jr.
,
2013
, “
Glycerol: Production, Consumption, Prices, Characterization and New Trends in Combustion
,”
Renewable Sustainable Energy Rev.
,
27
, pp.
475
493
.10.1016/j.rser.2013.06.017
10.
Sun
,
J.
,
Longtin
,
J. P.
, and
Irvine
,
T. F.
,
2001
, “
Laser-Based Thermal Pulse Measurement of Liquid Thermophysical Properties
,”
Int. J. Heat Mass Transfer
,
44
(
3
), pp.
645
657
.10.1016/S0017-9310(00)00119-8
11.
Le Brun
,
N.
, and
Markides
,
C. N.
,
2015
, “
A Galinstan-Filled Capillary Probe for Thermal Conductivity Measurements and Its Application to Molten Eutectic KNO3–NaNO3–NO2 (HTS) up to 700 K
,”
Int. J. Thermophys.
,
36
(
10–11
), pp.
3222
3238
.10.1007/s10765-015-1986-0
12.
Beck
,
M. P.
,
Sun
,
T.
, and
Teja
,
A. S.
,
2007
, “
The Thermal Conductivity of Alumina Nanoparticles Dispersed in Ethylene Glycol
,”
Fluid Phase Equilib.
,
260
(
2
), pp.
275
278
.10.1016/j.fluid.2007.07.034
13.
Palabiyik
,
I.
,
Musina
,
Z.
,
Witharana
,
S.
, and
Ding
,
Y.
,
2011
, “
Dispersion Stability and Thermal Conductivity of Propylene Glycol-Based Nanofluids
,”
J. Nanopart. Res.
,
13
(
10
), pp.
5049
5055
.10.1007/s11051-011-0485-x
14.
Suganthi
,
K. S.
,
Parthasarathy
,
M.
, and
Rajan
,
K. S.
,
2013
, “
Liquid-Layering Induced, Temperature-Dependent Thermal Conductivity Enhancement in ZnO–Propylene Glycol Nanofluids
,”
Chem. Phys. Lett.
,
561–562
, pp.
120
124
.10.1016/j.cplett.2013.01.044
15.
Sharifpur
,
M.
,
Tshimanga
,
N.
,
Meyer
,
J. P.
, and
Manca
,
O.
,
2017
, “
Experimental Investigation and Model Development for Thermal Conductivity of α-Al2O3-Glycerol Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
85
, pp.
12
22
.10.1016/j.icheatmasstransfer.2017.04.001
16.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
, “
The Use of Sources and Sinks in Case of Variable Temperature: The Continuous Line Source
,”
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press, Oxford
, UK, pp.
261
262
.
17.
Healy
,
J. J.
,
de Groot
,
J. J.
, and
Kestin
,
J.
,
1976
, “
The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity
,”
Phys. B+C
,
82
(
2
), pp.
392
408
.10.1016/0378-4363(76)90203-5
18.
Roder
,
H. M.
,
1981
, “
A Transient Hot Wire Thermal Conductivity Apparatus for Fluids
,”
J. Res. Natl. Bur. Stand.
,
86
(
5
), pp.
457
493
.10.6028/jres.086.020
19.
Pastoriza-Gallego
,
M. J.
,
Lugo
,
L.
,
Legido
,
J. L.
, and
Piñeiro
,
M. M.
,
2011
, “
Thermal Conductivity and Viscosity Measurements of Ethylene Glycol-Based Al2O3 Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
221
.10.1186/1556-276X-6-221
20.
Cabaleiro
,
D.
,
Nimo
,
J.
,
Pastoriza-Gallego
,
M. J.
,
Piñeiro
,
M. M.
,
Legido
,
J. L.
, and
Lugo
,
L.
,
2015
, “
Thermal Conductivity of Dry Anatase and Rutile Nano-Powders and Ethylene and Propylene Glycol-Based TiO2 Nanofluids
,”
J. Chem. Thermodyn.
,
83
, pp.
67
76
.10.1016/j.jct.2014.12.001
21.
Benazzouk
,
A.
,
Douzane
,
O.
,
Mezreb
,
K.
,
Laidoudi
,
B.
, and
Quéneudec
,
M.
,
2008
, “
Thermal Conductivity of Cement Composites Containing Rubber Waste Particles: Experimental Study and Modelling
,”
Constr. Build. Mater.
,
22
(
4
), pp.
573
579
.10.1016/j.conbuildmat.2006.11.011
22.
Hammerschmidt
,
U.
, and
Sabuga
,
W.
,
2000
, “
Transient Hot Wire (THW) Method: Uncertainty Assessment
,”
Int. J. Thermophys.
,
21
(
6
), pp.
1255
1278
.10.1023/A:1006649209044
23.
Ansys
,
2023
, “
Ansys Fluent Theory Guide, 2023/R1
,”
Ansys Inc., Canonsburg, PA.
24.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0
,”
National Institute of Standards and Technology, NIST
,
Gaithersburg, MD
.
25.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1990
,
Introduction to Heat Transfer
, 2nd ed.,
Wiley
,
New York
.
26.
Duluc
,
M.-C.
,
Xin
,
S.
, and
Quéré
,
P. L.
,
2003
, “
Transient Natural Convection and Conjugate Transients Around a Line Heat Source
,”
Int. J. Heat Mass Transfer
,
46
(
2
), pp.
341
354
.10.1016/S0017-9310(02)00266-1
You do not currently have access to this content.