Abstract

Microwave ablation (MWA), a therapy for localized cancer therapy, uses microwave-generated electromagnetic waves to destroy cancerous tumor cells without affecting much surrounding healthy tissues. This process involves exposing the cancerous tissue to a coaxial antenna emitting microwaves, raising the tumor temperature. Precise temperature control is essential to prevent damage to nearby healthy cells, requiring close monitoring. Treatment planning in India faces challenges due to the lack of oncological experts. To provide accessible and affordable care, we propose establishing a specialized patient treatment planning that combines the expertise of oncological surgeons and engineers. Proposed patient treatment planning will be using numerical analysis to solve Maxwell's equations and the bioheat equation using comsolmultiphysics software with finite element method to analyze temperature distribution, tissue damage, and electrothermal effects, which may be distributed as an executable standalone application for the clinician. Results indicate that microwave power significantly affects temperature and thermal damage, with 10 W power effectively destroying tumor cells with minimal harm to surrounding tissue, also shows the maximum temperature rises by 2.2–11% with each addition in power input of 2 W for the probes. The importance of blood perfusion has been brought to light in methods such as MWA because of the large difference in simulation outcomes between situations with and without blood perfusion. The maximum temperature drops to 3.6–8.61% for different power inputs. Last but not least, MWA is preferred where the tissue contains excess water due to a high rate of thermal damage.

References

1.
Ajani
,
O. O.
,
Nlebemuo
,
M. T.
,
Adekoya
,
J. A.
,
Ogunniran
,
K. O.
,
Siyanbola
,
T. O.
, and
Ajanaku
,
C. O.
,
2019
, “
Chemistry and Pharmacological Diversity of Quinoxaline Motifs as Anticancer Agents
,”
Acta Pharm.
,
69
(
2
), pp.
177
196
.10.2478/acph-2019-0013
2.
Bailey
,
C. W.
, and
Sydnor
,
M. K.
,
2019
, “
Current State of Tumor Ablation Therapies
,”
Dig. Dis. Sci.
,
64
(
4
), pp.
951
958
.10.1007/s10620-019-05514-9
3.
Vogl
,
T. J.
,
Basten
,
L. M.
,
Nour-Eldin
,
N.-E. A.
,
Kaltenbach
,
B.
,
Bodelle
,
B.
,
Wichmann
,
J. L.
,
Ackermann
,
H.
, and
Naguib
,
N. N. N.
,
2018
, “
Evaluation of Microwave Ablation of Liver Malignancy With Enabled Constant Spatial Energy Control to Achieve a Predictable Spherical Ablation Zone
,”
Int. J. Hyperthermia
,
34
(
4
), pp.
492
500
.10.1080/02656736.2017.1358408
4.
Radjenović
,
B.
,
Sabo
,
M.
,
Šoltes
,
L.
,
Prnova
,
M.
,
Čičak
,
P.
, and
Radmilović-Radjenović
,
M.
,
2021
, “
On Efficacy of Microwave Ablation in the Thermal Treatment of an Early-Stage Hepatocellular Carcinoma
,”
Cancers (Basel)
,
13
(
22
), p.
5784
.10.3390/cancers13225784
5.
Radmilović-Radjenović
,
M.
,
Bošković
,
N.
, and
Radjenović
,
B.
,
2022
, “
Computational Modeling of Microwave Tumor Ablation
,”
Bioengineering
,
9
(
11
), p.
656
.10.3390/bioengineering9110656
6.
Tehrani
,
M. H. H.
,
Soltani
,
M.
,
Kashkooli
,
F. M.
, and
Raahemifar
,
K.
,
2020
, “
Use of Microwave Ablation for Thermal Treatment of Solid Tumors With Different Shapes and Sizes—A Computational Approach
,”
PLoS One
,
15
(
6
), p.
e0233219
.10.1371/journal.pone.0233219
7.
Radmilović-Radjenović
,
M.
,
Bošković
,
N.
,
Sabo
,
M.
, and
Radjenović
,
B.
,
2022
, “
An Analysis of Microwave Ablation Parameters for Treatment of Liver Tumors From the 3D-IRCADb-01 Database
,”
Biomedicines
,
10
(
7
), p.
1569
.10.3390/biomedicines10071569
8.
Radmilović-Radjenović
,
M.
,
Sabo
,
M.
,
Prnova
,
M.
,
Šoltes
,
L.
, and
Radjenović
,
B.
,
2021
, “
Finite Element Analysis of the Microwave Ablation Method for Enhanced Lung Cancer Treatment
,”
Cancers (Basel)
,
13
(
14
), p.
3500
.10.3390/cancers13143500
9.
Matija
,
L.
,
2006
, “
Classification of Breast Cancer Luminescence Data Using Self-Organizing Mapping Neural Network
,” FME Transactions, 34, pp.
87
91
.
10.
Campbell
,
S. C.
,
Novick
,
A. C.
,
Belldegrun
,
A.
,
Blute
,
M. L.
,
Chow
,
G. K.
,
Derweesh
,
I. H.
,
Faraday
,
M. M.
, et al.,
2009
, “
Guideline for Management of the Clinical T1 Renal Mass
,”
J. Urol.
,
182
(
4
), pp.
1271
1279
.10.1016/j.juro.2009.07.004
11.
Cornelis
,
F. H.
,
Marcelin
,
C.
, and
Bernhard
,
J. C.
,
2017
, “
Microwave Ablation of Renal Tumors: A Narrative Review of Technical Considerations and Clinical Results
,”
Diagn. Interventional Imaging
,
98
(
4
), pp.
287
297
.10.1016/j.diii.2016.12.002
12.
Gupta
,
P. R.
,
Ghosh
,
P.
, and
Sarkar
,
J.
,
2023
, “
Effects of Probe Parameters on Radio-Frequency Ablation of Localized Liver Cancer Using a Personalized Patient Treatment Planning
,”
Therm. Sci. Eng. Prog.
,
46
, p.
102236
.10.1016/j.tsep.2023.102236
13.
Gupta
,
P. R.
,
2025
, “
Assessing the Thermal Damage Induced by Radiofrequency Ablation for Localized Liver Cancer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
147
(
1
), p.
011201
.10.1115/1.4066576
14.
Cornelis
,
F.
,
Balageas
,
P.
,
Le Bras
,
Y.
,
Rigou
,
G.
,
Boutault
,
J.-R.
,
Bouzgarrou
,
M.
, and
Grenier
,
N.
,
2012
, “
Radiologically-Guided Thermal Ablation of Renal Tumours
,”
Diagn. Interventional Imaging
,
93
(
4
), pp.
246
261
.10.1016/j.diii.2012.02.001
15.
Psutka
,
S.
,
McGovern
,
F.
,
Mueller
,
P.
,
McDougal
,
W. S.
,
Gervais
,
D.
, and
Feldman
,
A.
,
2012
, “
1115 Long-Term Durable Oncologic Outcomes After Radiofrequency Ablation for T1a Renal Cell Carcinoma
,”
J. Urol.
,
187
(
4S
), pp.
486
492
.10.1016/j.juro.2012.02.1223
16.
Yu
,
J.
,
Liang
,
P.
,
Yu
,
X.
,
Liu
,
F.
,
Chen
,
L.
, and
Wang
,
Y.
,
2011
, “
A Comparison of Microwave Ablation and Bipolar Radiofrequency Ablation Both With an Internally Cooled Probe: Results in Ex Vivo and in Vivo Porcine Livers
,”
Eur. J. Radiol.
,
79
(
1
), pp.
124
130
.10.1016/j.ejrad.2009.12.009
17.
Seror
,
O.
,
2015
, “
Ablative Therapies: Advantages and Disadvantages of Radiofrequency, Cryotherapy, Microwave and Electroporation Methods, or How to Choose the Right Method for an Individual Patient?
,”
Diagn. Interventional Imaging
,
96
(
6
), pp.
617
624
.10.1016/j.diii.2015.04.007
18.
Floridi
,
C.
,
De Bernardi
,
I.
,
Fontana
,
F.
,
Muollo
,
A.
,
Ierardi
,
A. M.
,
Agostini
,
A.
,
Fonio
,
P.
, et al.,
2014
, “
Microwave Ablation of Renal Tumors: State of the Art and Development Trends
,”
Radiol. Med.
,
119
(
7
), pp.
533
540
.10.1007/s11547-014-0426-8
19.
Woldu
,
S. L.
,
Thoreson
,
G. R.
,
Okhunov
,
Z.
,
Ghandour
,
R.
,
Rothberg
,
M. B.
,
RoyChoudhury
,
A.
,
Kim
,
H. H. R.
, et al.,
2015
, “
Comparison of Renal Parenchymal Volume Preservation Between Partial Nephrectomy, Cryoablation, and Radiofrequency Ablation Using 3D Volume Measurements
,”
J. Endourol.
,
29
(
8
), pp.
948
955
.10.1089/end.2014.0866
20.
Towoju
,
O. A.
,
Ishola
,
F. A.
,
Sanni
,
T.
, and
Soji-Adekunle
,
R.
,
2019
, “
Coaxial Antenna Slot Impact on Thermal Effectiveness in Microwave Ablation Therapy
,”
Int. J. Sci. Technol. Res.
,
8
(
6
), pp.
30
36
.https://www.ijstr.org/final-print/june2019/Coaxial-Antenna-Slot-Impact-On-Thermal-Effectiveness-In-Microwave-Ablation-Therapy.pdf
21.
Tucci
,
C.
,
Trujillo
,
M.
,
Berjano
,
E.
,
Iasiello
,
M.
,
Andreozzi
,
A.
, and
Vanoli
,
G. P.
,
2021
, “
Pennes' Bioheat Equation vs. Porous Media Approach in Computer Modeling of Radiofrequency Tumor Ablation
,”
Sci. Rep.
,
11
(
1
), pp.
1
13
.10.1038/s41598-021-84546-6
22.
Sljivic
,
M.
,
Stanojevic
,
M.
,
Djurdjevic
,
D.
,
Grujovic
,
N.
, and
Pavlovic
,
A.
,
2016
, “
Implementation of FEM and Rapid Prototyping in Maxillofacial Surgery
,”
FME Trans.
,
44
(
4
), pp.
422
429
.10.5937/fmet1604422S
23.
Higgins
,
L. J.
, and
Hong
,
K.
,
2015
, “
Renal Ablation Techniques: State of the Art
,”
Am. J. Roentgenol.
,
205
(
4
), pp.
735
741
.10.2214/AJR.15.14752
24.
Sindhu
,
T. N.
,
Çolak
,
A. B.
,
Lone
,
S. A.
,
Shafiq
,
A.
, and
Abushal
,
T. A.
,
2024
, “
A Decreasing Failure Rate Model With a Novel Approach to Enhance the Artificial Neural Network's Structure for Engineering and Disease Data Analysis
,”
Tribol. Int.
,
192
, p.
109231
.10.1016/j.triboint.2023.109231
25.
Selmi
,
M.
,
Bin Dukhyil
,
A. A.
, and
Belmabrouk
,
H.
,
2019
, “
Numerical Analysis of Human Cancer Therapy Using Microwave Ablation
,”
Appl. Sci.
,
10
(
1
), p.
211
.10.3390/app10010211
26.
Bhandari
,
A.
,
Mukharjee
,
S.
,
Kumar
,
A.
,
Singh
,
A.
, and
Zhan
,
W.
,
2023
, “
Highlighting the Effect of Heterogeneous Blood Perfusion on Radio-Frequency Ablation of Human Brain Tumors: An Image-Based Numerical Investigation
,”
Int. J. Therm. Sci.
,
189
, p.
108283
.10.1016/j.ijthermalsci.2023.108283
27.
Tissue
,
D.
,
2014
, “
Thermal Damage
,”
Encyclopedia of Thermal Stresses
,
Springer
,
Dordrecht, The Netherlands
, p.
5010
.10.1007/978-94-007-2739-7_100652
28.
Kabiri
,
A.
, and
Talaee
,
M. R.
,
2021
, “
Analysis of Hyperbolic Pennes Bioheat Equation in Perfused Homogeneous Biological Tissue Subject to the Instantaneous Moving Heat Source
,”
SN Appl. Sci.
,
3
(
4
), pp.
1
8
.10.1007/s42452-021-04379-w
29.
Gas
,
P.
,
2017
, “
Optimization of Multi-Slot Coaxial Antennas for Microwave Thermotherapy Based on the S11-Parameter Analysis
,”
Biocybern. Biomed. Eng.
,
37
(
1
), pp.
78
93
.10.1016/j.bbe.2016.10.001
30.
Chiang
,
J.
,
Wang
,
P.
, and
Brace
,
C. L.
,
2013
, “
Computational Modelling of Microwave Tumour Ablations
,”
Int. J. Hyperthermia
,
29
(
4
), pp.
308
317
.10.3109/02656736.2013.799295
31.
Bošković
,
N.
,
Radmilović-Radjenović
,
M.
, and
Radjenović
,
B.
,
2023
, “
Finite Element Analysis of Microwave Tumor Ablation Based on Open-Source Software Components
,”
Mathematics
,
11
(
12
), p.
2654
.10.3390/math11122654
32.
Keangin
,
P.
,
Rattanadecho
,
P.
, and
Wessapan
,
T.
,
2011
, “
An Analysis of Heat Transfer in Liver Tissue During Microwave Ablation Using Single and Double Slot Antenna
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
757
766
.10.1016/j.icheatmasstransfer.2011.03.027
33.
Wu
,
X.
,
Liu
,
B.
, and
Xu
,
B.
,
2016
, “
Theoretical Evaluation of High Frequency Microwave Ablation Applied in Cancer Therapy
,”
Appl. Therm. Eng.
,
107
, pp.
501
507
.10.1016/j.applthermaleng.2016.07.010
34.
Yang
,
D.
,
Converse
,
M. C.
,
Mahvi
,
D. M.
, and
Webster
,
J. G.
,
2007
, “
Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating
,”
IEEE Trans. Biomed. Eng.
,
54
(
8
), pp.
1382
1388
.10.1109/TBME.2007.890740
35.
Wijayanta
,
A. T.
, and
Kurata
,
K.
,
2023
, “
Comprehensive Review on Thermal Aspects of Nonthermal Irreversible Electroporation
,”
Heat Transfer
,
52
(
6
), pp.
4357
4381
.10.1002/htj.22880
36.
Izzo
,
F.
,
Granata
,
V.
,
Grassi
,
R.
,
Fusco
,
R.
,
Palaia
,
R.
,
Delrio
,
P.
,
Carrafiello
,
G.
,
Azoulay
,
D.
,
Petrillo
,
A.
, and
Curley
,
S. A.
,
2019
, “
Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update
,”
Oncologist
,
24
(
10
), pp.
e990
e1005
.10.1634/theoncologist.2018-0337
37.
Singh
,
M.
,
2024
, “
Modified Pennes Bioheat Equation With Heterogeneous Blood Perfusion: A Newer Perspective
,”
Int. J. Heat Mass Transfer
,
218
, p.
124698
.10.1016/j.ijheatmasstransfer.2023.124698
38.
Hall
,
S. K.
,
Ooi
,
E. H.
, and
Payne
,
S. J.
,
2015
, “
Cell Death, Perfusion and Electrical Parameters Are Critical in Models of Hepatic Radiofrequency Ablation
,”
Int. J. Hyperthermia
,
31
(
5
), pp.
538
550
.10.3109/02656736.2015.1032370
39.
Chang
,
I. A.
, and
Nguyen
,
U. D.
,
2004
, “
Thermal Modeling of Lesion Growth With Radiofrequency Ablation Devices
,”
Biomed. Eng. Online
,
3
(
1
), pp.
1
19
.10.1186/1475-925X-3-27
40.
Dhiman
,
M.
,
Kumawat
,
A. K.
, and
Repaka
,
R.
,
2020
, “
Directional Ablation in Radiofrequency Ablation Using a Multi-Tine Electrode Functioning in Multipolar Mode: An In-Silico Study Using a Finite Set of States
,”
Comput. Biol. Med.
,
126
, p.
104007
.10.1016/j.compbiomed.2020.104007
You do not currently have access to this content.