Abstract

Absorption refrigeration systems are widely used as an alternative to vapor compression refrigeration systems for heating and cooling applications, improving energy efficiency and reducing environmental impact. This paper comprehensively reviews the evolution of falling film absorbers, a key component of these systems. Falling film absorbers are particularly recognized for their compact design and high efficiency, making them suitable for various applications. The paper reviews several aspects of falling film absorbers, including design principles, operational mechanisms, and key performance factors, such as absorption rate, heat and mass transfer coefficients, and system configuration. Consequently, it evaluates the operation of these systems by studying critical elements such as spray density, Reynolds number, the presence of nonabsorbable gases, and the addition of nanoparticles. Additionally, this study highlights several long-standing challenges, such as maintaining a uniform distribution of the film in the system or scaling issues. However, advancements such as the integration of nanoparticles in the working fluid help improve efficiency. This study aims to guide future research and development toward advanced and sustainable absorption refrigeration systems based on an objective evaluation of their benefits and drawbacks.

References

1.
Jagdish
,
S. T.
, and
Ramana
,
P. V.
,
2019
, “
A Review on Performance Improvement of an Absorption Refrigeration System by Modification of Basic Cycle
,”
Int. J. Ambient Energy
,
40
(
6
), pp.
661
673
.10.1080/01430750.2017.1423379
2.
Dai
,
B.
,
Yang
,
H.
,
Liu
,
S.
,
Liu
,
C.
,
Wu
,
T.
,
Li
,
J.
,
Zhao
,
J.
, and
Nian
,
V.
,
2023
, “
Corrigendum to “Hybrid Solar Energy and Waste Heat Driving Absorption Subcooling Supermarket CO2 Refrigeration System: Energetic, Carbon Emission and Economic Evaluation in China” Sol. Energy 247 (2022) 123–145
,”
Sol. Energy
,
253
, p.
308
.10.1016/j.solener.2023.01.038
3.
Rahmani
,
M.
,
Shahabi Nejad
,
A.
,
Fallah Barzoki
,
M.
,
Kasaeian
,
A.
, and
Sameti
,
M.
,
2022
, “
Simulation of Solar Absorption Refrigeration Cycle With CuO Nanofluid for Summer Cooling of a Residential Building
,”
Therm. Sci. Eng. Prog.
,
34
, p.
101419
.10.1016/j.tsep.2022.101419
4.
Elias
,
M. S.
Wijeysundera
,
N. E.
, and
Hawlader
,
M. N. A.
,
2023
, “
Performance Analysis of a Novel Absorption-Refrigeration Driven Membrane Condenser System for Recovery of Water and Waste Heat From Flue Gas
,”
Int. J. Refrig.
,
156
, pp.
219
231
.10.1016/j.ijrefrig.2023.10.011
5.
Wahab
,
M.
,
Muhammad
,
A.
,
Muhammad
,
Z.
,
Muhammad
,
I.
,
Raza
,
N. S.
, and
Atif
,
M.
,
2023
, “
Thermo-Economic Evaluation of Supercritical CO2 Brayton Cycle Integrated With Absorption Refrigeration System and Organic Rankine Cycle for Waste Heat Recovery
,”
Therm. Sci. Eng. Prog.
,
44
, p.
102073
.10.1016/j.tsep.2023.102073
6.
Tao
,
C.
,
Hoseong
,
L.
,
Yunho
,
H.
,
Reinhard
,
R.
, and
Ho-Hwan
,
C.
,
2015
, “
Performance Investigation of Engine Waste Heat Powered Absorption Cycle Cooling System for Shipboard Applications
,”
Appl. Therm. Eng.
,
90
, pp.
820
830
.10.1016/j.applthermaleng.2015.07.070
7.
Ahmed
,
O.
, and
Youcef
,
E.-G.
,
2013
, “
Integration of an Ammonia-Water Absorption Refrigeration System With a Marine Diesel Engine: A Thermodynamic Study
,”
Procedia Comput. Sci.
,
19
, pp.
754
761
.10.1016/j.procs.2013.06.099
8.
Waltteri
,
S.
,
Juha
,
V.
,
Mia
,
E.
,
Maunu
,
K.
, and
Risto
,
L.
,
2017
, “
Using Waste Heat of Ship as Energy Source for an Absorption Refrigeration System
,”
Appl. Therm. Eng.
,
115
, pp.
501
516
.10.1016/j.applthermaleng.2016.12.131
9.
Francisco
,
T.
,
Mahmoud
,
B.
, and
Manel
,
V.
,
2014
, “
Analysis of Ammonia/Water and Ammonia/Salt Mixture Absorption Cycles for Refrigeration Purposes in Fishing Ships
,”
Appl. Therm. Eng.
,
66
(
1
), pp.
603
611
.10.1016/j.applthermaleng.2014.02.065
10.
Čampara
,
L.
,
Hasanspahić
,
N.
, and
Vujičić
,
S.
,
2018
, “
Overview of MARPOL ANNEX VI Regulations for Prevention of Air Pollution From Marine Diesel Engines
,” Global Maritime Conference (
GLOBMAR
),
Sopot, Poland, Apr. 19–20, pp. 1–10
.https://www.shs-conferences.org/articles/shsconf/pdf/2018/19/shsconf_globmar2018_01004.pdf
11.
Colorado
,
D.
, and
Rivera
,
W.
,
2015
, “
Performance Comparison Between a Conventional Vapor Compression and Compression-Absorption Single-Stage and Double-Stage Systems Used for Refrigeration
,”
Appl. Therm. Eng.
,
87
, pp.
273
285
.10.1016/j.applthermaleng.2015.05.029
12.
Papaefthimiou
,
V. D.
,
Koronaki
,
I. P.
,
Karampinos
,
D. C.
, and
Rogdakis
,
E. D.
,
2012
, “
A Novel Approach for Modelling LiBr–H2O Falling Film Absorption on Cooled Horizontal Bundle of Tubes
,”
Int. J. Refrig.
,
35
(
4
), pp.
1115
1122
.10.1016/j.ijrefrig.2012.01.015
13.
Pongsid
,
S.
,
Satha
,
A.
, and
Supachart
,
C.
,
2001
, “
A Review of Absorption Refrigeration Technologies
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
343
372
.10.1016/S1364-0321(01)00003-X
14.
Weixue
,
J.
,
Song
,
J.
,
Jia
,
T.
,
Yang
,
L.
,
Li
,
S.
,
Li
,
Y.
, and
Du
,
K.
,
2022
, “
A Comprehensive Review on the Pre-Research of Nanofluids in Absorption Refrigeration Systems
,”
Energy Rep.
,
8
, pp.
3437
3464
.10.1016/j.egyr.2022.02.087
15.
Ting
,
C.
,
Jinhyun
,
K.
, and
Honghyun
,
C.
,
2014
, “
Theoretical Analysis of the Thermal Performance of a Plate Heat Exchanger at Various Chevron Angles Using Lithium Bromide Solution With Nanofluid
,”
Int. J. Refrig.
,
48
, pp.
233
244
.10.1016/j.ijrefrig.2014.08.013
16.
Gábor
2021
, “
Exergetic Optimization of Absorption Chillers – A Case Study
,”
Case Stud. Therm. Eng.
,
28
, p.
101634
.10.1016/j.csite.2021.101634
17.
Kasra
,
M.
,
Mohammad
,
S.
, and
Kody
,
P.
,
2019
, “
A Novel Hybrid Dual-Temperature Absorption Refrigeration System: Thermodynamic, Economic, and Environmental Analysis
,”
J. Cleaner Prod.
,
233
, pp.
1075
1087
.10.1016/j.jclepro.2019.06.130
18.
Du
,
S.
,
Wang
,
R. Z.
, and
Xia
,
Z. Z.
,
2014
, “
Optimal Ammonia Water Absorption Refrigeration Cycle With Maximum Internal Heat Recovery Derived From Pinch Technology
,”
Energy
,
68
, pp.
862
869
.10.1016/j.energy.2014.02.065
19.
Omer
,
K.
, and
Muhsin
,
K.
,
2007
, “
Theoretical Study on the Effect of Operating Conditions on Performance of Absorption Refrigeration System
,”
Energy Convers. Manage.
,
48
(
2
), pp.
599
607
.10.1016/j.enconman.2006.06.005
20.
Lei
,
T.
,
Qian
,
Z.
, and
Ren
,
J.
,
2023
, “
Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources
,”
Energies
,
16
(
16
), p.
6036
.10.3390/en16166036
21.
Lizarte
,
R.
, and
Marcos
,
J.
,
2016
, “
COP Optimisation of a Triple-Effect H2O/LiBr Absorption Cycle Under Off-Design Conditions
,”
Appl. Therm. Eng.
,
99
, pp.
195
205
.10.1016/j.applthermaleng.2015.12.121
22.
Gomri
,
R.
,
2010
, “
Investigation of the Potential of Application of Single Effect and Multiple Effect Absorption Cooling Systems
,”
Energy Convers. Manage.
,
51
(
8
), pp.
1629
1636
.10.1016/j.enconman.2009.12.039
23.
Yokozeki
,
A.
,
2005
, “
Theoretical Performances of Various Refrigerant–Absorbent Pairs in a Vapor-Absorption Refrigeration Cycle by the Use of Equations of State
,”
Appl. Energy
,
80
(
4
), pp.
383
399
.10.1016/j.apenergy.2004.04.011
24.
Khamooshi
,
M.
,
Parham
,
K.
, and
Atikol
,
U.
,
2013
, “
Overview of Ionic Liquids Used as Working Fluids in Absorption Cycles
,”
Adv. Mech. Eng.
,
5
, p.
620592
.10.1155/2013/620592
25.
Talpada
,
J. S.
, and
Ramana
,
P.
,
2022
, “
A Review on Performance of Absorption Refrigeration System Using New Working Pairs and Nano-Particles
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
5654
5672
.10.1080/01430750.2021.1953589
26.
Makarim
,
D. A.
,
Suami
,
A.
,
Wijayanta
,
A. T.
,
Kobayashi
,
N.
,
Itaya
., and
Y.
,
Pranowo
,
2022
, “
Marangoni Convection Within Thermosolute and Absorptive Aqueous LiBr Solution
,”
Int. J. Heat Mass Transfer
,
188
, p.
122621
.10.1016/j.ijheatmasstransfer.2022.122621
27.
Makarim
,
D. A.
,
Wijayanta
,
A. T.
,
Suami
,
A.
,
Kobayashi
,
N.
, and
Itaya
,
Y.
,
2021
, “
Improvement of LiBr-H2O Pairs Absorption Heat Pump Performance Using LiBr Fine Crystal Slurry
,”
Proceedings of the International Conference on Power Engineering
(
ICOPE
), Shanghai, China, Oct.
17
21
.10.1299/jsmeicope.2021.15.2021-0197
28.
Wu
,
X.
,
Xu
,
S.
, and
Jiang
,
M.
,
2018
, “
Development of Bubble Absorption Refrigeration Technology: A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3468
3482
.10.1016/j.rser.2017.10.109
29.
Ben Jaballah
,
R.
,
Ben Hamida
,
M. B.
,
Saleh
,
J.
, and
Almeshaal
,
M. A.
,
2019
, “
Enhancement of the Performance of Bubble Absorber Using Hybrid Nanofluid as a Cooled Absorption System
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
10
), pp.
3857
3871
.10.1108/HFF-05-2018-0212
30.
Deng
,
S.
M., and
Ma
,
W.
B.,
1999
, “
Experimental Studies on the Characteristics of an Absorber Using LiBr/H2O Solution as Working Fluid
,”
Int. J. Refrig.
,
22
(
4
), pp.
293
301
.10.1016/S0140-7007(98)00067-X
31.
Amaris
,
C.
,
Vallès
,
M.
, and
Bourouis
,
M.
,
2018
, “
Vapour Absorption Enhancement Using Passive Techniques for Absorption Cooling/Heating Technologies: A Review
,”
Appl. Energy
,
231
, pp.
826
853
.10.1016/j.apenergy.2018.09.071
32.
Sehgal
,
S.
,
Alvarado
,
J. L.
,
Hassan
,
I. G.
, and
Kadam
,
S. T.
,
2021
, “
A Comprehensive Review of Recent Developments in Falling-Film, Spray, Bubble and Microchannel Absorbers for Absorption Systems
,”
Renewable Sustainable Energy Rev.
,
142
, p.
110807
.10.1016/j.rser.2021.110807
33.
Kim
,
B. J.
, and
Kang
,
I. S.
,
1995
, “
Absorption of Water Vapor Into Wavy-Laminar Falling Film of Aqueous Lithium-Bromide
,”
KSME J.
,
9
(
1
), pp.
115
122
.10.1007/BF02954359
34.
Kiyota
,
M.
,
Morioka
,
I.
,
Ousaka
,
A.
, and
Fujikawa
,
K.
,
1996
, “
Steam Absorption Into Films of Aqueous Solution of LiBr Flowing Over Multiple Horizontal Pipes
,”
Heat Transfer Jpn. Res.
,
25
(
7
), pp.
476
485
.10.1002/(SICI)1520-6556(1996)25:7<476::AID-HTJ6>3.0.CO;2-U
35.
Lee
,
S.
, and
Nagasaki
,
T.
,
1991
, “
Water Vapor Absorption Enhancement in LiBr/H2O Films Falling on Horizontal Tubes
,”
Exp. Heat Transfer Int. J.
,
4
(
4
), pp.
331
342
.10.1080/08916159108946425
36.
Yang
,
L.
,
Du
,
K.
,
Niu
,
X.
,
Zhang
,
Y.
, and
Li
,
Y.
,
2014
, “
Numerical Investigation of Ammonia Falling Film Absorption Outside Vertical Tube With Nanofluids
,”
Int. J. Heat Mass Transfer
,
79
, pp.
241
250
.10.1016/j.ijheatmasstransfer.2014.08.016
37.
Rogdakis
,
E.
, and
Papaefthimiou
,
V.
,
2002
, “
A Simplified Thermodynamic Analysis of a LiBr-H2O Vertical Tube Absorber
,”
ASME
Paper No. IMECE2002-39118.10.1115/IMECE2002-39118
38.
Lin
,
S. J. F.
, and
Shigang
,
Z.
,
2011
, “
Experimental Study on Vertical Vapor Absorption Into LiBr Solution With and Without Additive
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2850
2854
.10.1016/j.applthermaleng.2011.05.010
39.
Miller
,
W. A.
, and
Keyhani
,
M.
,
2001
, “
The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers
,”
ASME
Paper No. IMECE2001/AES-23605.10.1115/IMECE2001/AES-23605
40.
Medrano
,
M.
,
Bourouis
,
M.
, and
Coronas
,
A.
,
2002
, “
Absorption of Water Vapour in the Falling Film of Water–Lithium Bromide Inside a Vertical Tube at Air-Cooling Thermal Conditions
,”
Int. J. Therm. Sci.
,
41
(
9
), pp.
891
898
.10.1016/S1290-0729(02)01383-2
41.
Hosseinnia
,
S. M.
,
Naghashzadegan
,
M.
, and
Kouhikamali
,
R.
,
2017
, “
Numerical Study of Falling Film Absorption Process in a Vertical Tube Absorber Including Soret and Dufour Effects
,”
Int. J. Therm. Sci.
,
114
, pp.
123
138
.10.1016/j.ijthermalsci.2016.11.006
42.
Hoffmann
,
L.
,
Greiter
,
I.
,
Wagner
,
A.
,
Weiss
,
V.
, and
Alefeld
,
G.
,
1996
, “
Experimental Investigation of Heat Transfer in a Horizontal Tube Falling Film Absorber With Aqueous Solutions of LiBr With and Without Surfactants
,”
Int. J. Refrig.
,
19
(
5
), pp.
331
341
.10.1016/S0140-7007(96)00026-6
43.
Hao
,
Z.
,
Lan
,
Z.
,
Wang
,
Q.
,
Zhao
,
Y.
, and
Ma
,
X.
,
2014
, “
Heat and Mass Transfer Enhancement for Falling Film Absorption With Coated Distribution Tubes at High Temperature
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
147
153
.10.1016/j.expthermflusci.2013.11.022
44.
García-Rivera
,
E.
,
Castro
,
J.
,
Farnós
,
J.
, and
Oliva
,
A.
,
2016
, “
Numerical and Experimental Investigation of a Vertical LiBr Falling Film Absorber Considering Wave Regimes and in Presence of Mist Flow
,”
Int. J. Therm. Sci.
,
109
, pp.
342
361
.10.1016/j.ijthermalsci.2016.05.029
45.
Conlisk
,
A.
,
1995
, “
Analytical Solutions for the Heat and Mass Transfer in a Falling Film Absorber
,”
Chem. Eng. Sci.
,
50
(
4
), pp.
651
660
.10.1016/0009-2509(94)00261-O
46.
Bourouis
,
M.
,
Vallès
,
M.
,
Medrano
,
M.
, and
Coronas
,
A.
,
2005
, “
Absorption of Water Vapour in the Falling Film of Water–(LiBr+ LiI+ LiNO3+ LiCl) in a Vertical Tube at Air-Cooling Thermal Conditions
,”
Int. J. Therm. Sci.
,
44
(
5
), pp.
491
498
.10.1016/j.ijthermalsci.2004.11.009
47.
Aminyavari
,
M.
,
Aprile
,
M.
,
Toppi
,
T.
,
Garone
,
S.
, and
Motta
,
M.
,
2017
, “
A Detailed Study on Simultaneous Heat and Mass Transfer in an in-Tube Vertical Falling Film Absorber
,”
Int. J. Refrig.
,
80
, pp.
37
51
.10.1016/j.ijrefrig.2017.04.029
48.
Li
,
T.
,
Yin
,
Y.
,
Liang
,
Z.
, and
Zhang
,
X.
,
2018
, “
Experimental Study on Heat and Mass Transfer Performance of Falling Film Absorption Over a Vertical Tube Using LiCl Solution
,”
Int. J. Refrig.
,
85
, pp.
109
119
.10.1016/j.ijrefrig.2017.09.015
49.
Zacarías
,
A.
,
Venegas
,
M.
,
Lecuona
,
A.
,
Ventas
,
R.
, and
Carvajal
,
I.
,
2015
, “
Experimental Assessment of Vapour Adiabatic Absorption Into Solution Droplets Using a Full Cone Nozzle
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
228
238
.10.1016/j.expthermflusci.2015.05.001
50.
Kang
,
Y. T.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2000
, “
Analytical Investigation of Two Different Absorption Modes: Falling Film and Bubble Types
,”
Int. J. Refrig.
,
23
(
6
), pp.
430
443
.10.1016/S0140-7007(99)00075-4
51.
Lee
,
K. B.
,
Chun
,
B. H.
,
Lee
,
J. C.
,
Hyun
,
J. C.
, and
Kim
,
S. H.
,
2002
, “
Comparison of Heat and Mass Transfer in Falling Film and Bubble Absorbers of Ammonia-Water
,”
Exp. Heat Transfer
,
15
(
3
), pp.
191
205
.10.1080/08916150290082621
52.
Castro
,
J.
,
Oliet
,
C.
,
Rodríguez
,
I.
, and
Oliva
,
A.
,
2009
, “
Comparison of the Performance of Falling Film and Bubble Absorbers for Air-Cooled Absorption Systems
,”
Int. J. Therm. Sci.
,
48
(
7
), pp.
1355
1366
.10.1016/j.ijthermalsci.2008.11.021
53.
Nagavarapu
,
A. K.
, and
Garimella
,
S.
,
2022
, “
Comparative Assessment of Falling-Film and Convective-Flow Absorption in Microscale Geometries
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
10
), p.
101017
.10.1115/1.4054302
54.
Sui
,
Z.
,
Wu
,
W.
,
You
,
T.
,
Zheng
,
Z.
, and
Leung
,
M.
,
2021
, “
Performance Investigation and Enhancement of Membrane-Contactor Microchannel Absorber Towards Compact Absorption Cooling
,”
Int. J. Heat Mass Transfer
,
169
, p.
120978
.10.1016/j.ijheatmasstransfer.2021.120978
55.
Mosadegh-Sedghi
,
S.
,
Rodrigue
,
D.
,
Brisson
,
J.
, and
Iliuta
,
M. C.
,
2014
, “
Wetting Phenomenon in Membrane Contactors–Causes and Prevention
,”
J. Membr. Sci.
,
452
, pp.
332
353
.10.1016/j.memsci.2013.09.055
56.
Chuah
,
C. Y.
,
Kim
,
K.
,
Lee
,
J.
,
Koh
,
D.-Y.
, and
Bae
,
T.-H.
,
2020
, “
CO2 Absorption Using Membrane Contactors: Recent Progress and Future Perspective
,”
Ind. Eng. Chem. Res.
,
59
(
15
), pp.
6773
6794
.10.1021/acs.iecr.9b05439
57.
Nagavarapu
,
A. K.
, and
Garimella
,
S.
,
2013
, “
Falling-Film Absorption Around Microchannel Tube Banks
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
12
), p.
122001
.10.1115/1.4024261
58.
Beutler
,
A.
,
Greiter
,
I.
,
Wagner
,
A.
,
Hoffman
,
L.
,
Schreier
,
S.
, and
Alefeld
,
G.
,
1996
, “
Surfactants and Fluid Properties
,”
Int. J. Refrig.
,
19
(
5
), pp.
342
346
.10.1016/S0140-7007(96)00034-5
59.
Papadopoulos
,
A. I.
,
Kyriakides
,
A.-S.
,
Seferlis
,
P.
, and
Hassan
,
I.
,
2019
, “
Absorption Refrigeration Processes With Organic Working Fluid Mixtures-a Review
,”
Renewable Sustainable Energy Rev.
,
109
, pp.
239
270
.10.1016/j.rser.2019.04.016
60.
De Lucas
,
A.
,
Donate
,
M.
, and
Rodríguez
,
J. F.
,
2007
, “
Absorption of Water Vapor Into New Working Fluids for Absorption Refrigeration Systems
,”
Ind. Eng. Chem. Res.
,
46
(
1
), pp.
345
350
.10.1021/ie061229b
61.
Yoon
,
J.-I.
,
Phan
,
T. T.
,
Moon
,
C.-G.
,
Lee
,
H.-S.
, and
Jeong
,
S.-K.
,
2008
, “
Heat and Mass Transfer Characteristics of a Horizontal Tube Falling Film Absorber With Small Diameter Tubes
,”
Heat Mass Transfer
,
44
(
4
), pp.
437
444
.10.1007/s00231-007-0261-8
62.
Gomri
,
R.
,
2009
, “
Second Law Comparison of Single Effect and Double Effect Vapour Absorption Refrigeration Systems
,”
Energy Convers. Manage.
,
50
(
5
), pp.
1279
1287
.10.1016/j.enconman.2009.01.019
63.
Nikbakhti
,
R.
,
Wang
,
X.
,
Hussein
,
A. K.
, and
Iranmanesh
,
A.
,
2020
, “
Absorption Cooling Systems–Review of Various Techniques for Energy Performance Enhancement
,”
Alexandria Eng. J.
,
59
(
2
), pp.
707
738
.10.1016/j.aej.2020.01.036
64.
Wonchala
,
J.
,
Hazledine
,
M.
, and
Boulama
,
K. G.
,
2014
, “
Solution Procedure and Performance Evaluation for a Water–LiBr Absorption Refrigeration Machine
,”
Energy
,
65
, pp.
272
284
.10.1016/j.energy.2013.11.087
65.
Keinath
,
C. M.
,
Garimella
,
S.
, and
Garrabrant
,
M. A.
,
2017
, “
Modeling of an Ammonia–Water Absorption Heat Pump Water Heater for Residential Applications
,”
Int. J. Refrig.
,
83
, pp.
39
50
.10.1016/j.ijrefrig.2017.06.007
66.
Florides
,
G. A.
,
Kalogirou
,
S. A.
,
Tassou
,
S. A.
, and
Wrobel
,
L.
,
2003
, “
Design and Construction of a LiBr–Water Absorption Machine
,”
Energy Conver. Manag.
,
44
(
15
), pp.
2483
2508
.10.1016/S0196-8904(03)00006-2
67.
Alexeev
,
A.
, and
Oron
,
A.
,
2007
, “
Suppression of the Rayleigh-Taylor Instability of Thin Liquid Films by the Marangoni Effect
,”
Phys. Fluids
,
19
(
8
), p.
082101
.10.1063/1.2750307
68.
Glebov
,
D.
, and
Setterwall
,
F.
,
2002
, “
Experimental Study of Heat Transfer Additive Influence on the Absorption Chiller Performance
,”
Int. J. Refrig.-Rev. Int. Du Froid
,
25
(
5
), pp.
538
545
.10.1016/S0140-7007(01)00042-1
69.
Gang
,
W.
,
Jitong
,
L.
,
Gang
,
Y.
,
Rongji
,
X.
,
Guozhen
,
X.
, and
Xiaoshu
,
L.
,
2024
, “
Numerical Investigation on Heat and Mass Transfer Characteristics of Inclined Plate Falling Film Absorption With Nano-Lithium Bromide Solution
,”
Appl. Therm. Eng.
,
239
, p.
122124
.10.1016/j.applthermaleng.2023.122124
70.
Kang
,
Y. T.
,
Kim
,
H. J.
, and
Lee
,
K. I.
,
2008
, “
Heat and Mass Transfer Enhancement of Binary Nanofluids for H2O/LiBr Falling Film Absorption Process
,”
Int. J. Refrig.
,
31
(
5
), pp.
850
856
.10.1016/j.ijrefrig.2007.10.008
71.
Yang
,
L.
,
Du
,
K.
,
Niu
,
X. F.
,
Cheng
,
B.
, and
Jiang
,
Y. F.
,
2011
, “
Experimental Study on Enhancement of Ammonia–Water Falling Film Absorption by Adding Nano-Particles
,”
Froid
,
34
(
3
), pp.
640
647
.10.1016/j.ijrefrig.2010.12.017
72.
Kim
,
H.
,
Jeong
,
J.
, and
Kang
,
Y. T.
,
2012
, “
Heat and Mass Transfer Enhancement for Falling Film Absorption Process by SiO2 Binary Nanofluids
,”
Int. J. Refrig.
,
35
(
3
), pp.
645
651
.10.1016/j.ijrefrig.2011.11.018
73.
Binglu
,
R.
,
Ruan
,
B.
,
Anthony
,
M. J.
, and
Jacobi
,
A. M.
,
2012
, “
Heat Transfer Characteristics of Multiwall Carbon Nanotube Suspensions (MWCNT Nanofluids) in Intertube Falling-Film Flow
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3186
3195
.10.1016/j.ijheatmasstransfer.2012.02.051
74.
Gang
,
W.
,
Zhang
,
Q.
,
Zeng
,
M.
,
Xu
,
R.
,
Xie
,
G.
, and
Chu
,
W.
,
2018
, “
Investigation on Mass Transfer Characteristics of the Falling Film Absorption of LiBr Aqueous Solution Added With Nanoparticles
,”
Int. J. Refrig.-Rev. Int. Du Froid
,
89
, pp.
149
158
.10.1016/j.ijrefrig.2018.01.017
75.
Lianying
,
Z.
,
Zhang
,
Q.
,
Zeng
,
M.
,
Xu
,
R.
,
Xie
,
G.
, and
Chu
,
W.
,
2018
, “
Experimental Study on Enhancement of Falling Film Absorption Process by Adding Various Nanoparticles
,”
Int. Commun. Heat Mass Transfer
,
92
, pp.
100
106
.10.1016/j.icheatmasstransfer.2018.02.011
76.
Gao
,
H.
,
Mao
,
F.
,
Song
,
Y.
,
Hong
,
J.
, and
Yan
,
Y.
,
2020
, “
Effect of Adding Copper Oxide Nanoparticles on the Mass/Heat Transfer in Falling Film Absorption
,”
Appl. Therm. Eng.
,
181
, p.
115937
.10.1016/j.applthermaleng.2020.115937
77.
Kedzierski
,
M. A.
,
2015
, “
Effect of Concentration on R134a/Al2O3 Nanolubricant Mixture Boiling on a Reentrant Cavity Surface
,”
Int. J. Refrig.
,
49
, pp.
36
48
.10.1016/j.ijrefrig.2014.09.012
78.
Xiao
,
L.
,
Guogeng
,
H.
,
Jinyu
,
W.
,
Sai
,
Z.
,
Zian
,
H.
, and
Dehua
,
C.
,
2022
, “
Experimental Study on Absorption Characteristics of a Falling Film Absorber With Micro-Scale NH3/LiNO3 Liquid Film
,”
Appl. Therm. Eng.
,
200
, p.
117719
.10.1016/j.applthermaleng.2021.117719
79.
Arnat
,
M.
,
Nolwenn
,
L. P.
, and
Julien
,
R.
,
2022
, “
Review of Coupled Heat and Mass Transfer Studies in Falling Film Absorbers: Modeling, Experimental and Thermodynamic Approaches
,”
Int. J. Refrig.
,
136
, pp.
229
244
.10.1016/j.ijrefrig.2022.01.024
80.
Alvarez
,
M.
, and
Bourouis
,
M.
,
2021
, “
Modelling of Coupled Heat and Mass Transfer in a Water-Cooled Falling-Film Absorber Working With an Aqueous Alkaline Nitrate Solution
,”
Energies
,
14
(
7
), p.
1804
.10.3390/en14071804
81.
Goel
,
N.
, and
Goswami
,
D. Y.
,
2005
, “
A Compact Falling Film Absorber
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
9
), pp.
957
965
.10.1115/1.1929781
82.
Goel
,
N.
, and
Goswami
,
D. Y.
,
2005
, “
Analysis of a Counter-Current Vapor Flow Absorber
,”
Int. J. Heat Mass Transfer
,
48
(
7
), pp.
1283
1292
.10.1016/j.ijheatmasstransfer.2004.10.009
83.
Islam
,
M. R.
,
Wijeysundera
,
N.
, and
Ho
,
J.
,
2004
, “
Simplified Models for Coupled Heat and Mass Transfer in Falling-Film Absorbers
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
395
406
.10.1016/j.ijheatmasstransfer.2003.07.001
84.
Fernández-Seara
,
J.
,
Uhía
,
F. J.
, and
Sieres
,
J.
,
2007
, “
Analysis of an Air Cooled Ammonia–Water Vertical Tubular Absorber
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
93
103
.10.1016/j.ijthermalsci.2006.03.005
85.
Ding
,
H.
,
Xie
,
P.
,
Ingham
,
D.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2018
, “
Flow Behaviour of Drop and Jet Modes of a Laminar Falling Film on Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
124
, pp.
929
942
.10.1016/j.ijheatmasstransfer.2018.03.111
86.
Killion
,
J.
, and
Garimella
,
S.
,
2003
, “
A Review of Experimental Investigations of Absorption of Water Vapor in Liquid Films Falling Over Horizontal Tubes
,”
HVACR Res.
,
9
(
2
), pp.
111
136
.10.1080/10789669.2003.10391060
87.
Jeong
,
S.
, and
Garimella
,
S.
,
2002
, “
Falling-Film and Droplet Mode Heat and Mass Transfer in a Horizontal Tube LiBr/Water Absorber
,”
Int. J. Heat Mass Transfer
,
45
(
7
), pp.
1445
1458
.10.1016/S0017-9310(01)00262-9
88.
Killion
,
J. D.
, and
Garimella
,
S.
,
2001
, “
A Critical Review of Models of Coupled Heat and Mass Transfer in Falling-Film Absorption
,”
Int. J. Refrig.
,
24
(
8
), pp.
755
797
.10.1016/S0140-7007(00)00086-4
89.
González
,
J. C.
,
2005
,
Simulation of Heat and Mass Transfer Phenomena in the Critical Elements of H2O-LiBr Absorption Cooling Machines. Experimental Validation and Application to Design
,
Universitat Politècnica de Catalunya
, Barcelona Spain.
90.
Jeong
,
S.
, and
Garimella
,
S.
,
2005
, “
Optimal Design of Compact Horizontal Tube LiBr/Water Absorbers
,”
HVACR Res.
,
11
(
1
), pp.
27
44
.10.1080/10789669.2005.10391124
91.
Babadi
,
F.
, and
Farhanieh
,
B.
,
2005
, “
Characteristics of Heat and Mass Transfer in Vapor Absorption of Falling Film Flow on a Horizontal Tube
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1253
1265
.10.1016/j.icheatmasstransfer.2005.05.011
92.
Nomura
,
T.
,
Nishimura
,
N.
,
Wei
,
S.
,
Yamaguchi
,
S.
, and
Kawakami
,
R.
,
1993
, “
Heat and Mass Transfer Mechanism in the Absorber of Water/LiBr Conventional Absorption Refrigerator: Experimental Examination by Visualized Model
,” International Absorption Heat Pump Conference, 31, pp. 203--208.
93.
Jian
,
S.
,
Lin
,
F.
,
Shigang
,
Z.
, and
Wei
,
H.
,
2010
, “
A Mathematical Model With Experiments of Single Effect Absorption Heat Pump Using LiBr–H2O
,”
Appl. Therm. Eng.
,
30
(
17
), pp.
2753
2762
.10.1016/j.applthermaleng.2010.07.032
94.
Subramaniam
,
V.
, and
Garimella
,
S.
,
2014
, “
Numerical Study of Heat and Mass Transfer in Lithium Bromide-Water Falling Films and Droplets
,”
Int. J. Refrig.
,
40
, pp.
211
226
.10.1016/j.ijrefrig.2013.07.025
95.
Subramaniam
,
V.
,
Chandrasekaran
,
S.
, and
Garimella
,
S.
,
2021
, “
A 2-D Numerical Analysis of Heat and Mass Transfer in Lithium Bromide-Water Falling Films and Droplets
,”
Int. J. Heat Mass Transfer
,
177
, p.
121518
.10.1016/j.ijheatmasstransfer.2021.121518
96.
Seol
,
S. S.
, and
Lee
,
S. Y.
,
2005
, “
Experimental Study of Film Flow and Heat/Mass Transfer in LiBr–H2O Solution Flowing Over a Cooled Horizontal Tube
,”
Int. Commun. Heat Mass Transfer
,
32
(
3–4
), pp.
445
453
.10.1016/j.icheatmasstransfer.2004.07.007
97.
Papaefthimiou
,
V. D.
,
Karampinos
,
D. C.
, and
Rogdakis
,
E. D.
,
2006
, “
A Detailed Analysis of Water-Vapour Absorption in LiBr–H2O Solution on a Cooled Horizontal Tube
,”
Appl. Therm. Eng.
,
26
(
17–18
), pp.
2095
2102
.10.1016/j.applthermaleng.2006.04.010
98.
Huan
,
Z.
,
Yin
,
D.
,
You
,
S.
,
Zheng
,
W.
, and
Wei
,
S.
,
2018
, “
Experimental Investigation of Heat and Mass Transfer in a LiBr-H2O Solution Falling Film Absorber on Horizontal Tubes: Comprehensive Effects of Tube Types and Surfactants
,”
Appl. Therm. Eng.
,
146
, pp.
203
211
.10.1016/j.applthermaleng.2018.09.127
99.
Park
,
C. W.
,
Cho
,
H. C.
, and
Kang
,
Y. T.
,
2004
, “
The Effect of Heat Transfer Additive and Surface Roughness of Micro-Scale Hatched Tubes on Absorption Performance
,”
Int. J. Refrig.
,
27
(
3
), pp.
264
270
.10.1016/j.ijrefrig.2003.09.008
100.
Ruan
,
B.
, and
Jacobi
,
A. M.
,
2011
, “
Investigation on Intertube Falling-Film Heat Transfer and Mode Transitions of Aqueous-Alumina Nanofluids
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
5
), p.
051501
.10.1115/1.4002980
101.
Hu
,
X.
, and
Jacobi
,
A. M.
,
1996
, “
The Intertube Falling Film: Part 2-Mode Effects on Sensible Heat Transfer to a Falling Liquid Film
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
3
), pp.
626
633
.10.1115/1.2822678
102.
Ganic
,
E. N.
, and
Roppo
,
M.
,
1980
, “
An Experimental Study of Falling Liquid Film Breakdown on a Horizontal Cylinder During Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
102
(
2
), pp.
342
346
.10.1115/1.3244285
103.
Zhang
,
H.
,
Yin
,
D.
,
You
,
S.
,
Zheng
,
W.
,
Li
,
B.
, and
Zhang
,
X.
,
2019
, “
Numerical and Experimental Investigation on the Heat and Mass Transfer of Falling Film and Droplet Regimes in Horizontal Tubes LiBr-H2O Absorber
,”
Appl. Therm. Eng.
,
146
, pp.
752
767
.10.1016/j.applthermaleng.2018.10.046
104.
Triché
,
D.
,
Bonnot
,
S.
,
Perier-Muzet
,
M.
,
Boudéhenn
,
F.
,
Demasles
,
H.
, and
Caney
,
N.
,
2016
, “
Modeling and Experimental Study of an Ammonia-Water Falling Film Absorber
,”
Energy Procedia
,
91
, pp.
857
867
.10.1016/j.egypro.2016.06.252
105.
Patnaik
,
V.
,
Perez-Blanco
,
H.
, and
Ryan
,
W.
,
1993
, “
A Simple Model for the Design of Vertical Tube Absorbers
,”
ASHRAE Trans.
,
99
, pp.
1
43
.https://www.osti.gov/biblio/10184532
106.
Wu
,
Z.
,
You
,
S.
,
Jiang
,
T.
,
Zhang
,
H.
,
Wang
,
Y.
,
Jiang
,
Y.
,
Sha
,
L.
, and
Wei
,
S.
,
2022
, “
Model Development and Numerical Analysis of a Vertical Falling Film Absorption Heat Pump
,”
J. Cleaner Prod.
,
331
, p.
129967
.10.1016/j.jclepro.2021.129967
107.
Elias
,
M.
,
Wijeysundera
,
N. E.
, and
Hawlader
,
M. N. A.
,
2003
, “
Evaluation of Heat and Mass Transfer Coefficients for a Vertical Tube Absorber
,” Proceedings of the International Conference on Mechanical Engineering (
ICME2003
), Dec. 26--28, pp. 1--7.https://me.buet.ac.bd/public/old/icme/icme2003/Proceedings/PDF/ICME03-TH-05.pdf
108.
William
,
A. M.
, and
Miller
,
W. A.
,
1998
, “
The Experimental Analysis of Aqueous Lithium Bromide Vertical Film Absorption
,”
Doctoral dissertation
, The University of Tennessee, Knoxville, TN.https://trace.tennessee.edu/cgi/viewcontent.cgi?article=2993&context=utk_graddiss
109.
Zhang
,
L.
,
Wang
,
Y.
,
Fu
,
Y.
,
Xing
,
L.
, and
Jin
,
L.
,
2015
, “
Numerical Simulation of H2O/LiBr Falling Film Absorption Process
,”
Energy Procedia
,
75
, pp.
3119
3126
.10.1016/j.egypro.2015.07.644
110.
Colombani
,
J.
, and
Bert
,
J.
,
2007
, “
Holographic Interferometry for the Study of Liquids
,”
J. Mol. Liq.
,
134
(
1–3
), pp.
8
14
.10.1016/j.molliq.2006.12.013
111.
Colombani
,
J.
,
Bert
,
J.
, and
Dupuy-Philon
,
J.
,
1999
, “
Thermal Diffusion in (LiCl, RH2O)
,”
J. Chem. Phys.
,
110
(
17
), pp.
8622
8627
.10.1063/1.478769
112.
Soto Francés
,
V. M.
, and
Pinazo Ojer
,
J. M.
,
2003
, “
Validation of a Model for the Absorption Process of H2O(Vap) by a LiBr(aq) in a Horizontal Tube Bundle, Using a Multi-Factorial Analysis
,”
Int. J. Heat Mass Transfer
,
46
(
17
), pp.
3299
3312
.10.1016/S0017-9310(03)00121-2
113.
Rastaturin
,
A.
,
Demekhin
,
E.
, and
Kalaidin
,
E.
,
2006
, “
Optimal Regimes of Heat-Mass Transfer in a Falling Film
,”
J. Non-Equilib. Thermodyn.
,
31
(
1
), pp.
1
10
.10.1515/JNETDY.2006.001
114.
Lu
,
T.
, and
Xiao
,
F.
,
2018
, “
Lattice Boltzmann Simulation of Falling Film Flow Under Low Reynolds Number
,”
Heat Transfer Eng.
,
39
(
17–18
), pp.
1528
1539
.10.1080/01457632.2017.1369843
115.
Huayu
,
Z.
,
Gao
H.
,
Gao
X.
, and
Yan
Y.
,
2022
, “
Falling-Film Absorption Model Considering Surface Wave and Vibration Effects Based on Lattice Boltzmann Method
,”
Energies
,
15
(
21
), pp.
7925
7925
.10.3390/en15217925
116.
Karami
,
S.
, and
Farhanieh
,
B.
,
2009
, “
A Numerical Study on the Absorption of Water Vapor Into a Film of Aqueous LiBr Falling Along a Vertical Plate
,”
Heat Mass Transfer
,
46
(
2
), pp.
197
207
.10.1007/s00231-009-0557-y
117.
Ben Hamida
,
M. B.
,
Belghaieb
,
J.
, and
Hajji
,
N.
,
2018
, “
Heat and Mass Transfer Enhancement for Falling Film Absorption Process in Vertical Plate Absorber by Adding Copper Nanoparticles
,”
Arab. J. Sci. Eng.
,
43
(
9
), pp.
4991
5001
.10.1007/s13369-018-3252-9
118.
Medrano
,
M.
,
Bourouis
,
M.
,
Perez-Blanco
,
H.
, and
Coronas
,
A.
,
2003
, “
A Simple Model for Falling Film Absorption on Vertical Tubes in the Presence of Non-Absorbables
,”
Int. J. Refrig.
,
26
(
1
), pp.
108
116
.10.1016/S0140-7007(02)00015-4
119.
Islam
,
M.
R.,
Wijeysundera
,
N. E.
, and
Ho
,
J. C.
,
2003
, “
Performance Study of a Falling-Film Absorber With a Film-Inverting Configuration
,”
Int. J. Refrig.
,
26
(
8
), pp.
909
917
.10.1016/S0140-7007(03)00078-1
120.
Islam
,
M. R.
,
Islam
,
M. R.
,
Wijeysundera
,
N. E.
,
Wijeysundera
,
N. E.
,
Ho
,
J. C.
, and
Ho
,
J. C.
,
2003
, “
Evaluation of Heat and Mass Transfer Coefficients for Falling-Films on Tubular Absorbers
,”
Int. J. Refrig.-Rev. Int. Du Froid
,
26
(
2
), pp.
197
204
.10.1016/S0140-7007(02)00076-2
121.
Islam
,
M. R.
,
Wijeysundera
,
N. E.
, and
Ho
,
J. C.
,
2006
, “
Heat and Mass Transfer Effectiveness and Correlations for Counter-Flow Absorbers
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4171
4182
.10.1016/j.ijheatmasstransfer.2006.04.002
122.
Islam
,
M. R.
,
2008
, “
Absorption Process of a Falling Film on a Tubular Absorber: An Experimental and Numerical Study
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1386
1394
.10.1016/j.applthermaleng.2007.10.004
123.
William
,
A. M.
,
Miller
,
W. A.
,
Miller
,
W. A.
,
Horacio
,
P.-B.
,
Perez-Blanco
,
H.
, and
Perez-Blanco
,
H.
,
1993
, “
Vertical-Tube Aqueous LiBr Falling Film Absorption Using Advanced Surfaces
,” International Absorption Heat Pump Conference, 31, pp.
185
202
.
124.
Jung-In
,
Y.
,
Kwon
,
O. K.
, and
Moon
,
C. G.
,
2015
, “
Experimental Study of Heat and Mass Transfer on an Absorber With Several Enhancement Tubes
,”
Heat Transfer Res.
,
28
(
8
), pp.
664
674
.10.1002/(SICI)1523-1496(1999)28:8&lt;664::AID-HTJ4&gt;3.0.CO;2-P
125.
Miller
,
W. A.
, and
Keyhani
,
M.
,
2001
, “
The Correlation of Simultaneous Heat and Mass Transfer Experimental Data for Aqueous Lithium Bromide Vertical Falling Film Absorption
,”
ASME J. Sol. Energy Eng.
,
123
(
1
), pp.
30
42
.10.1115/1.1349550
126.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
127.
Nabil
,
B. H.
,
Bechir
,
C.
, and
Slimane
,
G.
,
2014
, “
Global Modeling of Heat and Mass Transfers in Spiral Tubular Absorber of a Water–Lithium Bromide Absorption Chiller
,”
Int. J. Refrig.
,
38
, pp.
323
332
.10.1016/j.ijrefrig.2013.09.039
128.
Bo
,
S.
,
Ma
,
X.
,
Lan
,
Z.
,
Chen
,
J.
, and
Chen
,
H.
,
2010
, “
Numerical Simulation on the Falling Film Absorption Process in a Counter-Flow Absorber
,”
Chem. Eng. J.
,
156
(
3
), pp.
607
612
.10.1016/j.cej.2009.04.066
129.
Gengfa
,
F.
,
Liu
,
C. J.
,
Yuan
,
X. G.
, and
Yu
,
K. T.
,
2004
, “
CFD Simulation of Liquid Film Flow on Inclined Plates
,”
Chem. Eng. Technol.
,
27
(
10
), pp.
1099
1104
.10.1002/ceat.200402018
130.
Shahram
,
K.
,
Karami
,
S.
,
Bijan
,
F.
, and
Farhanieh
,
B.
,
2011
, “
Numerical Modeling of Incline Plate LiBr Absorber
,”
Heat Mass Transfer
,
47
(
3
), pp.
259
267
.10.1007/s00231-010-0715-2
131.
Ashouri
,
M.
, and
Bahrami
,
M.
,
2022
, “
Heat and Mass Transfer in Laminar Falling Film Absorption: A Compact Analytical Model
,”
Int. J. Heat Mass Transfer
,
188
, p.
122598
.10.1016/j.ijheatmasstransfer.2022.122598
132.
Huishu
,
Z.
,
Yuan
,
X.
,
Yu
,
K.
,
Kalbassi
,
M. A.
, and
Liu
,
B.
,
2014
, “
Influence of the Marangoni Effect on Mass Transfer in Inclined Falling Films
,”
Chem. Eng. Technol.
,
37
(
7
), pp.
1095
1102
.10.1002/ceat.201300713
133.
Zhijie
,
X.
,
Khoo
,
B. C.
, and
Wijeysundera
,
N. E.
,
2008
, “
Mass Transfer Across the Falling Film: Simulations and Experiments
,”
Chem. Eng. Sci.
,
63
(
9
), pp.
2559
2575
.10.1016/j.ces.2008.02.014
134.
Gao
,
H.
,
He
,
M.
,
Sun
,
W.
, and
Yan
,
Y.
,
2018
, “
Surface Wave Characteristic of Falling Film in Swing Absorber and Its Influences on Absorption Performance
,”
Appl. Therm. Eng.
,
129
, pp.
1508
1517
.10.1016/j.applthermaleng.2017.09.141
135.
Odunfa
,
K. M.
,
Onwuka
,
C.
, and
Ajuka
,
L. O.
,
2018
, “
Simulation of A Thin-Liquid Smooth Falling-Film In An Absorption Cooling System
,”
IOSR-JMCE
, 15(1), pp. 45--50.https://www.iosrjournals.org/iosr-jmce/papers/vol15-issue1/Version-3/G1501034550.pdf
136.
Yaxiu
,
G.
, and
Yuyuan
,
W.
,
2009
, “
Test and Simulation of a New Solar LiBr Falling-Film Absorber
,”
AIAA
Paper No. 2009-4635.10.2514/6.2009-4635
137.
Mehta
,
S.
,
Chauhan
,
K. P.
, and
Kanagaraj
,
S.
,
2011
, “
Modeling of Thermal Conductivity of Nanofluids by Modifying Maxwell's Equation Using Cell Model Approach
,”
J. Nanopart. Res.
,
13
(
7
), pp.
2791
2798
.10.1007/s11051-010-0167-0
138.
Gonçalves
,
I.
,
Souza
,
R.
,
Coutinho
,
G.
,
Miranda
,
J.
,
Moita
,
A.
,
Pereira
,
J. E.
,
Moreira
,
A.
, and
Lima
,
R.
,
2021
, “
Thermal Conductivity of Nanofluids: A Review on Prediction Models, Controversies and Challenges
,”
Appl. Sci.
,
11
(
6
), p.
2525
.10.3390/app11062525
139.
Rizvi
,
I. H.
,
Jain
,
A.
,
Ghosh
,
S. K.
, and
Mukherjee
,
P. S.
,
2013
, “
Mathematical Modelling of Thermal Conductivity for Nanofluid Considering Interfacial Nano-Layer
,”
Heat Mass Transfer
,
49
(
4
), pp.
595
600
.10.1007/s00231-013-1117-z
You do not currently have access to this content.