Abstract

Explicit closed-form expressions for the velocity, depth of ablation front, and penetration of the thermal profile valid up to a Stefan number of 30 (the vast majority of technological materials have a value below 10) and for all times in the problem of ablation under a constant heat flux are derived. The analysis is based on the blending of the asymptotic, transient, and steady-state, regimes of the above-mentioned quantities. Expressions to estimate the characteristic values representative of intermediate behaviors are also proposed. The prediction of depth and velocity of penetration calculated with the expressions proposed resulted in a maximum absolute error below 8% in comparison to the numerical solution. This model assumes a thick substrate and a criterion for minimum thickness is also proposed. Equations to predict the thickness of the heat-affected zone and of the mushy zone in ablation are also derived. The ultimate aim of this work is to provide simple and accurate expressions to predict the progress of the ablation or to select optimal process parameters in case ablation is used in manufacturing.

References

1.
Wang
,
Y.
,
Shen
,
N.
,
Befekadu
,
G. K.
, and
Pasiliao
,
C. L.
,
2017
, “
Modeling Pulsed Laser Ablation of Aluminum With Finite Element Analysis Considering Material Moving Front
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1246
1253
.10.1016/j.ijheatmasstransfer.2017.06.056
2.
Prisco
,
U.
,
Duman
,
U.
, and
Mendez
,
P. F.
,
2023
, “
Scaling Modelling of Penetration in High Productivity Gas Tungsten Arc Welding
,”
J. Mater. Process. Technol.
,
320
, p.
118120
.10.1016/j.jmatprotec.2023.118120
3.
Scott
,
P. F.
, and
Smith
,
W.
,
1996
, “
Key Parameters of High Frequency Welding
,”
Tube Int.
,
15
, pp.
147
152
.
4.
Wang
,
Y.
,
Chen
,
Z.
, and
Yu
,
S.
,
2016
, “
Ablation Behavior and Mechanism Analysis of C/SiC Composites
,”
J. Mater. Res. Technol.
,
5
(
2
), pp.
170
182
.10.1016/j.jmrt.2015.10.004
5.
Milos
,
F. S.
,
Chen
,
Y.-K.
,
Squire
,
T.
, and
Brewer
,
R.
,
1999
, “
Analysis of Galileo Probe Heatshield Ablation and Temperature Data
,”
J. Spacecr. Rockets
,
36
(
3
), pp.
298
306
.10.2514/2.3465
6.
Erb
,
A. J.
,
West
,
T. K.
, and
Johnston
,
C. O.
,
2020
, “
Investigation of Galileo Probe Entry Heating With Coupled Radiation and Ablation
,”
J. Spacecr. Rockets
,
57
(
4
), pp.
692
706
.10.2514/1.A34751
7.
Bogaerts
,
A.
,
Chen
,
Z.
,
Gijbels
,
R.
, and
Vertes
,
A.
,
2003
, “
Laser Ablation for Analytical Sampling: What Can we Learn From Modeling?
,”
Spectrochim. Acta Part B At. Spectrosc.
,
58
(
11
), pp.
1867
1893
.10.1016/j.sab.2003.08.004
8.
Kerse
,
C.
,
Kalaycıoğlu
,
H.
,
Elahi
,
P.
,
Çetin
,
B.
,
Kesim
,
D. K.
,
Akçaalan
,
Ö.
,
Yavaş
,
S.
,
Aşık
,
M. D.
,
Öktem
,
B.
,
Hoogland
,
H.
,
Holzwarth
,
R.
, and
Ilday
,
F. Ö.
,
2016
, “
Ablation-Cooled Material Removal With Ultrafast Bursts of Pulses
,”
Nature
,
537
(
7618
), pp.
84
88
.10.1038/nature18619
9.
Ge
,
J.
,
Li
,
W.
,
Chao
,
X.
,
Wang
,
H.
,
Wang
,
Z.
, and
Qi
,
L.
,
2022
, “
Experiment-Based Numerical Evaluation of the Surface Recession of C/C–SiC Composites Under the High-Energy Laser
,”
Ceram. Int.
,
48
(
23
), pp.
34550
34563
.10.1016/j.ceramint.2022.08.039
10.
Torre
,
L.
,
Kenny
,
J. M.
, and
Maffezzoli
,
A.
,
1998
, “
Degradation Behaviour of a Composite Material for Thermal Protection Systems Part I–Experimental Characterization
,”
J. Mater. Sci.
,
33
(
12
), pp.
3137
3143
.10.1023/A:1004399923891
11.
Lee
,
S.
,
Yang
,
Y.
, and
Park
,
S.-H.
,
2023
, “
Aerothermal Effects of Ablation on Carbon-Based Space Objects
,”
Int. J. Heat Mass Transfer
,
202
, p.
123731
.10.1016/j.ijheatmasstransfer.2022.123731
12.
Landau
,
H. G.
,
1950
, “
Heat Conduction in a Melting Solid
,”
Q. Appl. Math.
,
8
(
1
), pp.
81
94
.10.1090/qam/33441
13.
Biot
,
M. A.
, and
Daughaday
,
H.
,
1962
, “
Variational Analysis of Ablation
,”
J. Aerosp. Sci.
,
29
(
2
), pp.
227
229
.10.2514/8.9367
14.
Masters
,
J. I.
,
1956
, “
Problem of Intense Surface Heating of a Slab Accompanied by Change of Phase
,”
J. Appl. Phys.
,
27
(
5
), pp.
477
484
.10.1063/1.1722407
15.
Mody
,
K.
, and
Özişik
,
M.
,
1976
, “
Melting of a Semi-Infinite Solid With Nonlinear Heat Transfer at the Boundary
,”
Lett. Heat Mass Transfer
,
2
(
6
), pp.
487
493
.10.1016/0094-4548(76)90020-5
16.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
17.
Hartree
,
D. R.
,
1935
, “
Some Properties and Applications of the Repeated Integrals of the Error Function
,”
Proc. Manchester Literary Philos. Soc.
,
80
, pp.
85
102
.
18.
Washio
,
T.
, and
Motoda
,
H.
,
1999
, “
Extension of Dimensional Analysis for Scale-Types and Its Application to Discovery of Admissible Models of Complex Processes
,”
International Workshop on Similarity Methods
, Osaka, Japan, pp.
129
147
.
19.
Mendez
,
P.
,
2020
, “
Reduced Order Models for Welding and Solidification Processes
,”
IOP Conference Series: Materials Science and Engineering
, Jönköping, Sweden, June 22--23, p.
012003
.10.1088/1757 899X/861/1/012003
20.
Mendez
,
P. F.
,
2023
, “
Calculation of Thermal Features in Welding and Additive Manufacturing
,”
IOP Conference Series: Materials Science and Engineering
, Banff, AB, Canada, June 18--23, p.
012021
.10.1088/1757 899X/1281/1/012021
21.
Mendez
,
P. F.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Scaling Analysis of a Moving Point Heat Source in Steady-State on a Semi-Infinite Solid
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
8
), p.
081301
.10.1115/1.4039353
22.
Touloukian
,
Y. S.
,
1964
,
Tables of Thermophysical Properties of Materials
,
AF Materials Laboratory, Research and Technology Division, Air Force Systems, Wright-Patterson Air Force Base
,
OH
.
23.
Southard
,
M.
, and
Green
,
D.
,
2018
,
Perry's Chemical Engineers' Handbook
, 9th ed.,
McGraw-Hill Education
,
New York
.
24.
Grimvall
,
G.
,
1999
,
Thermophysical Properties of Materials
,
Elsevier
,
Amsterdam, Netherlands
.
25.
Klueh
,
R.
,
2005
,
Properties and Selection: Irons, Steels, and High Performance Alloys
,
ASM International, Materials Park
,
OH
.
26.
Churchill
,
S.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.10.1002/aic.690180606
27.
Okuyama
,
K.
,
Kato
,
S.
, and
Ohya
,
H.
,
2013
, “
Thermochemical Performance of a Lightweight Charring Carbon Fiber Reinforced Plastic
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
56
(
3
), pp.
159
169
.10.2322/tjsass.56.159
28.
Reynier
,
P.
,
2013
, “
Survey of Convective Blockage for Planetary Entries
,”
Acta Astronaut.
,
83
, pp.
175
195
.10.1016/j.actaastro.2012.06.016
29.
Orlov
,
D. M.
,
Hanson
,
M. O.
,
Escalera
,
J.
,
Taheri
,
H.
,
Villareal
,
C. N.
,
Zubovic
,
D. M.
,
Bykov
,
I.
,
Kostadinova
,
E. G.
,
Rudakov
,
D. L.
, and
Ghazinejad
,
M.
,
2021
, “
Design and Testing of Dimes Carbon Ablation Rods in the DIII-D Tokamak
,”
ASME
Paper No. IMECE2021-73326.10.1115/IMECE2021-73326
30.
Haga
,
H.
,
Aoki
,
K.
, and
Sato
,
T.
,
1980
, “
Welding Phenomena and Welding Mechanisms in Highfrequency Electric Resistance Welding-1st Report
,”
Weld. J.
,
59
(
7
), pp.
208 s
–2
16 s
.
You do not currently have access to this content.