Abstract

Fast and accurate reduced order models (ROMs) of conductive–radiative systems are important for several industrial applications, such as spacecraft, radiant furnaces, solar collectors, etc. The nonlinear nature of radiative heat transfer limits the accuracy of the traditional proper orthogonal decomposition (POD)-based Galerkin projection approach, which works best in the linear realm. Optimal projection schemes based on least-squares minimization of time discrete residuals have shown great promise for solving nonlinear convection-diffusion problems. The accuracy and efficiency of the approach rely on the critical assumptions relating to the low-dimensional structure of the residuals, Jacobians, and a reduced sample mesh required for hyper-reduction. We argue that these assumptions may not hold true for the problems involving radiation. We investigate a coupled conduction and enclosure radiation problem to establish this claim. First, we demonstrate that least-squares Petrov–Galerkin reduced order model, (LSPG-ROM) indeed gives higher accuracy than Galerkin-ROM for the same reduced dimension. Further, we show that while hyper-reduction can be used to obtain significant computational gain for the residual approximation, this is not the case for the Jacobian approximation, as Jacobian snapshots exhibit very slow singular value decay. Moreover, we find that the sample mesh size is in fact close to the full order model (FOM) dimension, hence making the computational cost dependent on the FOM dimension. Finally, we reinforce the above observations by performing an exhaustive performance analysis to compare and characterize the computational cost of FOM, LSPG, and hyper-reduced LSPG-ROMs.

References

1.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2019
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
Cambridge, UK
.10.1017/9781108380690
2.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
3.
Everson
,
R.
, and
Sirovich
,
L.
,
1995
, “
Karhunen–Loève Procedure for Gappy Data
,”
J. Opt. Soc. Am. A
,
12
(
8
), p.
1657
.10.1364/JOSAA.12.001657
4.
Chaturantabut
,
S.
, and
Sorensen
,
D. C.
,
2010
, “
Nonlinear Model Reduction Via Discrete Empirical Interpolation
,”
SIAM J. Sci. Comput.
,
32
(
5
), pp.
2737
2764
.10.1137/090766498
5.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
,
2017
, “
Modal Analysis of Fluid Flows: An Overview
,”
AIAA J.
,
55
(
12
), pp.
4013
4041
.10.2514/1.J056060
6.
Deane
,
A. E.
,
Kevrekidis
,
I. G.
,
Karniadakis
,
G. E.
, and
Orszag
,
S. A.
,
1991
, “
Low-Dimensional Models for Complex Geometry Flows: Application to Grooved Channels and Circular Cylinders
,”
Phys. Fluids A
,
3
(
10
), pp.
2337
2354
.10.1063/1.857881
7.
Couplet
,
M.
,
Basdevant
,
C.
, and
Sagaut
,
P.
,
2005
, “
Calibrated Reduced-Order POD-Galerkin System for Fluid Flow Modelling
,”
J. Comput. Phys.
,
207
(
1
), pp.
192
220
.10.1016/j.jcp.2005.01.008
8.
Alonso
,
D.
,
Velazquez
,
A.
, and
Vega
,
J. M.
,
2009
, “
Robust Reduced Order Modeling of Heat Transfer in a Back Step Flow
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1149
1157
.10.1016/j.ijheatmasstransfer.2008.09.011
9.
Fic
,
A.
,
Białecki
,
R. A.
, and
Kassab
,
A. J.
,
2005
, “
Solving Transient Nonlinear Heat Conduction Problems by Proper Orthogonal Decomposition and the Finite-Element Method
,”
Numer. Heat Transfer, Part B
,
48
(
2
), pp.
103
124
.10.1080/10407790590935920
10.
Georgaka
,
S.
,
Stabile
,
G.
,
Rozza
,
G.
, and
Bluck
,
M. J.
,
2020
, “
Parametric pod-Galerkin Model Order Reduction for Unsteady-State Heat Transfer Problems
,”
Commun. Comput. Phys.
,
27
(
1
), 1–32.10.4208/cicp.OA-2018-0207
11.
Park
,
H. M.
,
Chung
,
O. Y.
, and
Lee
,
J. H.
,
1999
, “
On the Solution of Inverse Heat Transfer Problem Using the Karhunen-Loéve Galerkin Method
,”
Int. J. Heat Mass Transfer
,
42
(
1
), pp.
127
142
.10.1016/S0017-9310(98)00136-7
12.
Ostrowski
,
Z.
,
Białecki
,
R. A.
, and
Kassab
,
A. J.
,
2008
, “
Solving Inverse Heat Conduction Problems Using Trained POD-RBF Network Inverse Method
,”
Inverse Probl. Sci. Eng.
,
16
(
1
), pp.
39
54
.10.1080/17415970701198290
13.
Benner
,
P.
,
Gugercin
,
S.
, and
Willcox
,
K.
,
2015
, “
A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
,”
SIAM Rev.
,
57
(
4
), pp.
483
531
.10.1137/130932715
14.
Benosman
,
M.
,
Borggaard
,
J.
,
San
,
O.
, and
Kramer
,
B.
,
2017
, “
Learning-Based Robust Stabilization for Reduced-Order Models of 2D and 3D Boussinesq Equations
,”
Appl. Math. Modell.
,
49
, pp.
162
181
.10.1016/j.apm.2017.04.032
15.
Amsallem
,
D.
,
Zahr
,
M. J.
, and
Farhat
,
C.
,
2012
, “
Nonlinear Model Order Reduction Based on Local Reduced-Order Bases
,”
Int. J. Numer. Methods Eng.
,
92
(
10
), pp.
891
916
.10.1002/nme.4371
16.
Grimberg
,
S.
,
Farhat
,
C.
, and
Youkilis
,
N.
,
2020
, “
On the Stability of Projection-Based Model Order Reduction for Convection-Dominated Laminar and Turbulent Flows
,”
J. Comput. Phys.
,
419
, p.
109681
.10.1016/j.jcp.2020.109681
17.
Carlberg
,
K.
,
Barone
,
M.
, and
Antil
,
H.
,
2017
, “
Galerkin v. least-Squares Petrov–Galerkin Projection in Nonlinear Model Reduction
,”
J. Comput. Phys.
,
330
, pp.
693
734
.10.1016/j.jcp.2016.10.033
18.
Carlberg
,
K.
,
Bou-Mosleh
,
C.
, and
Farhat
,
C.
,
2011
, “
Efficient Non-Linear Model Reduction Via a Least-Squares Petrov-Galerkin Projection and Compressive Tensor Approximations
,”
Int. J. Numer. Methods Eng.
,
86
(
2
), pp.
155
181
.10.1002/nme.3050
19.
Biswas
,
N.
,
Chatterjee
,
S.
,
Das
,
M.
,
Garai
,
A.
,
Roy
,
P. C.
, and
Mukhopadhyay
,
A.
,
2015
, “
Analysis of Particle Image Velocimetry Measurements of Natural Convection in an Enclosure Using Proper Orthogonal Decomposition
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
137
(
12
), p.
124502
.10.1115/1.4030957
20.
Georgiou
,
M. D.
,
Bonanos
,
A. M.
, and
Georgiadis
,
J. G.
,
2017
, “
Experimental Investigation of Transitional Natural Convection in a Cube Using Particle Image Velocimetry Part II: Turbulence Quantities and Proper Orthogonal Decomposition
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
1
), p.
012503
.10.1115/1.4034167
21.
Nguyen
,
T.
, and
Merzari
,
E.
,
2021
, “
On the Impact of Aspect Ratio and Other Geometric Effects on the Stability of Rectangular Thermosiphons
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
7
), p.
072601
.10.1115/1.4051055
22.
Blanc
,
T. J.
,
Jones
,
M. R.
, and
Gorrell
,
S. E.
,
2016
, “
Reduced-Order Modeling of Conjugate Heat Transfer Processes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
5
), p.
051703
.10.1115/1.4032453
23.
Samadiani
,
E.
, and
Joshi
,
Y.
,
2010
, “
Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
7
), p.
071402
.10.1115/1.4000978
24.
Samadiani
,
E.
,
Joshi
,
Y.
,
Hamann
,
H.
,
Iyengar
,
M. K.
,
Kamalsy
,
S.
, and
Lacey
,
J.
,
2012
, “
Reduced Order Thermal Modeling of Data Centers Via Distributed Sensor Data
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
134
(
4
), p.
041401
.10.1115/1.4004011
25.
Tallet
,
A.
,
Allery
,
C.
, and
Allard
,
F.
,
2015
, “
POD Approach to Determine in Real-Time the Temperature Distribution in a Cavity
,”
Build. Environ.
,
93
(
P2
), pp.
34
49
.10.1016/j.buildenv.2015.07.007
26.
Li
,
K.
,
Su
,
H.
,
Chu
,
J.
, and
Xu
,
C.
,
2013
, “
A fast-POD Model for Simulation and Control of Indoor Thermal Environment of Buildings
,”
Build. Environ.
,
60
, pp.
150
157
.10.1016/j.buildenv.2012.11.020
27.
Nokhosteen
,
A.
, and
Sobhansarbandi
,
S.
,
2020
, “
Novel Method of Thermal Behavior Prediction of Evacuated Tube Solar Collector
,”
Sol. Energy
,
204
, pp.
761
768
.10.1016/j.solener.2020.05.008
28.
Barabadi
,
B.
,
Kumar
,
S.
, and
Joshi
,
Y. K.
,
2017
, “
Transient Heat Conduction in On-Chip Interconnects Using Proper Orthogonal Decomposition Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
7
), p.
072101
.10.1115/1.4035889
29.
Raghupathy
,
A. P.
,
Ghia
,
U.
,
Ghia
,
K.
, and
Maltz
,
W.
,
2010
, “
Boundary-Condition-Independent Reduced-Order Modeling of Heat Transfer in Complex Objects by POD-Galerkin Methodology: 1D Case Study
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
132
(
6
), p.
064502
.10.1115/1.4000945
30.
Wang
,
Y.
,
Qin
,
G.
,
Tamma
,
K. K.
,
Maxam
,
D.
, and
Tae
,
D.
,
2021
, “
Numerical Investigations on Model Order Reduction to SEM Based on POD-DEIM to Linear/Nonlinear Heat Transfer Problems
,”
Numer. Heat Transfer, Part B
,
80
(
3–4
), pp.
39
52
.
31.
Wang
,
Y.
,
Yu
,
B.
,
Cao
,
Z.
,
Zou
,
W.
, and
Yu
,
G.
,
2012
, “
A Comparative Study of POD Interpolation and POD Projection Methods for Fast and Accurate Prediction of Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4827
4836
.10.1016/j.ijheatmasstransfer.2012.04.053
32.
San
,
O.
, and
Maulik
,
R.
,
2018
, “
Machine Learning Closures for Model Order Reduction of Thermal Fluids
,”
Appl. Math. Modell.
,
60
, pp.
681
710
.10.1016/j.apm.2018.03.037
33.
Gao
,
X.
,
Hu
,
J.
, and
Huang
,
S.
,
2016
, “
A Proper Orthogonal Decomposition Analysis Method for Multimedia Heat Conduction Problems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
138
(
7
), p.
071301
.10.1115/1.4033081
34.
Arienti
,
M.
,
Blonigan
,
P. J.
,
Rizzi
,
F.
,
Tencer
,
J.
, and
Howard
,
M.
,
2021
, “
Projection-Based Model Reduction for Finite-Element Simulations of Thermal Protection Systems
,”
AIAA
Paper No. 2021-1717.10.2514/6.2021-1717
35.
Tencer
,
J.
,
Carlberg
,
K.
,
Larsen
,
M.
, and
Hogan
,
R.
,
2017
, “
Accelerated Solution of Discrete Ordinates Approximation to the Boltzmann Transport Equation for a Gray Absorbing-Emitting Medium Via Model Reduction
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
12
), p.
122701
.10.1115/1.4037098
36.
Gaume
,
B.
,
Joly
,
F.
, and
Quéméner
,
O.
,
2019
, “
Modal Reduction for a Problem of Heat Transfer With Radiation in an Enclosure
,”
Int. J. Heat Mass Transfer
,
141
, pp.
779
788
.10.1016/j.ijheatmasstransfer.2019.07.039
37.
Rother
,
S.
, and
Beitelschmidt
,
M.
,
2018
, “
Load Snapshot Decomposition to Consider Heat Radiation in Thermal Model Order Reduction
,”
IFAC-PapersOnLine
,
51
(
2
), pp.
667
672
.10.1016/j.ifacol.2018.03.113
38.
Brunini
,
V.
,
Parish
,
E. J.
,
Tencer
,
J.
, and
Rizzi
,
F.
,
2022
, “
Projection-Based Model Reduction for Coupled Conduction—Enclosure Radiation Systems
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
6
), p.
062101
.10.1115/1.4053994
39.
Carlberg
,
K.
,
Farhat
,
C.
,
Cortial
,
J.
, and
Amsallem
,
D.
,
2013
, “
The GNAT Method for Nonlinear Model Reduction: Effective Implementation and Application to Computational Fluid Dynamics and Turbulent Flows
,”
J. Comput. Phys.
,
242
, pp.
623
647
.10.1016/j.jcp.2013.02.028
40.
Gilmore
,
D.
,
2002
,
Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies
,
The Aerospace Press
,
El Segundo, CA
.10.2514/4.989117
41.
Gebhart
,
B.
,
1961
, “
Surface Temperature Calculations in Radiant Surroundings of Arbitrary Complexity—for Gray, Diffuse Radiation
,”
Int. J. Heat Mass Transfer
,
3
(
4
), pp.
341
346
.10.1016/0017-9310(61)90048-5
42.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
43.
Du
,
E.
, and
Yano
,
M.
,
2022
, “
Efficient Hyperreduction of High-Order Discontinuous Galerkin Methods: Element-Wise and Point-Wise Reduced Quadrature Formulations
,”
J. Comput. Phys.
,
466
, p.
111399
.10.1016/j.jcp.2022.111399
You do not currently have access to this content.